Test case of Thermo-Magnetism with Linear Coefficients in Three Dimensions

1. Introduction

This page presents the simulation of electromagnetism in A-V Formulation coupled with thermic problem on geometry of torus in transient case with CFPDEs application.

2. Run the calculation

The command line to run this case is :

    mpirun -np 4 feelpp_toolbox_coefficientformpdes --config-file=thermo-mag.cfg --cfpdes.gmsh.hsize=1e-3

To run the case with adaptative time-step :

    sh feelpp_adaptative.sh

3. Data Files

The case data files are available in Github here :

4. Equation

In this subsection, we retake the coupled equation (AV+Heat Axis) of Heat equation and AV-Formulation in axisymetrical coordinates with new coefficients.

The domain of resolution of electromagnetism part is \(\Omega^{axis}\) with bounds \(\Gamma^{axis}\), \(\Gamma_D^{axis}\) the bound of Dirichlet conditions and \(\Gamma_N^{axis}\) the bound of Neumann conditions such that \(\Gamma^{axis} = \Gamma_N^{axis} \cup \Gamma_D^{axis}\).

The domain of resolution of heat part is \(\Omega_c^{axis} \subset \Omega^{axis}\) (and the domain of definition of electrical potential \(V\) and electrical conductivity \(\sigma\)) with bounds \(\Gamma_c^{axis}\), \(\Gamma_{Dc}^{axis}\) the bound of Dirichlet conditions and \(\Gamma_{Nc}^{axis}\) the bound of Neumann conditions such that \(\Gamma_c^{axis} = \Gamma_{Nc}^{axis} \cup \Gamma_{Dc}^{axis}\).

Coupled A-V Formulation with gauge condition and Heat Equation
\[\text{(AV+gauge)} \left\{ \begin{matrix} \sigma \frac{d \textbf{A}}{d t} + \frac{1}{\mu} \Delta \textbf{A} &=& - \sigma \nabla V & \text{ on } \Omega & \text{(AV+gauge-1)} \\ \nabla \cdot \left( \sigma \nabla V \right) &=& - \nabla \cdot \left( \sigma \frac{\partial \mathbf{A}}{\partial t} \right) & \text{ on } \Omega_c & \text{(AV-2)} \\ \mathbf{A} &=& 0 & \text{ on } \Gamma_D & \text{(DA)} \\ \frac{\partial \mathbf{A}}{\partial \mathbf{n}} &=& 0 & \text{ on } \Gamma_N & \text{(NA)} \\ V &=& V_0 & \text{ on } \Gamma_{DV} & \text{(DV)} \\ \frac{\partial V}{\partial \mathbf{n}} &=& 0 & \text{ on } \Gamma_{NV} & \text{(NV)} \\ \rho C_p \, \frac{\partial T}{\partial t} - k \Delta T &=& \sigma \left( \nabla V + \frac{\partial \mathbf{A}}{\partial t} \right) \cdot \left( \nabla V + \frac{\partial \mathbf{A}}{\partial t} \right) & \text{ on } \Omega_c & \text{(Heat)} \\ \frac{\partial T}{\partial \mathbf{n}} &=& 0 & \text{ on } \Gamma_{Nc} & \text{(Heat-N)} \\ - k \, \frac{\partial T}{\partial \mathbf{n}} &=& h \, \left( T - T_c \right) & \text{ on } \Gamma_{Rc} & \text{(Heat-R)} \\ \end{matrix} \right.\]

With :

  • \(A_{\theta}\) magnetic potential field, such that the magnetic field is writed \(\mathbf{B} = \nabla \times \mathbf{A}\)

  • \(T\) : temperature \((K)\)

  • \(\sigma\) : electric conductivity \((S/m)\)

  • \(\mu\) : electric permeability \((kg/A^2/S^2)\)

  • \(\rho\) : density \((kg/m^3)\)

  • \(C_p\) : thermal capacity \((J/K/kg)\)

  • \(k\) : thermal conductivity \((W/m/K)\)

  • \(U\) : tension \(Volt\)

5. Geometry

The geometry is a torus of the conductor in cartesian coordinates \((x,y,z)\), surrounded by air.

1torus 3d(1)
Geometry in three dimensions
1torus 3d(2)
Geometry in three dimensions cut loop on Conductor

The geometrical domains are :

  • Conductor (\(\Omega_c\)) : the torus, it is composed of conductive materials

    • V0 : enter of electrical potential

    • V1 : exit of electrical potential

(V0 \(\cup\) V1 \( = \Gamma_{Dc}\))

  • air (\(\Omega/\Omega_c\)) : the air surround Conductor

    • OXOZ : \(OxOz\) plan

    • OYOZ : \(OyOz\) plan

    • Infty : the rest of bound of Air

Symbol

Description

value

unit

\(r_{int}\)

interior radius of torus

\(75e-3\)

m

\(r_{ext}\)

exterior radius of torus

\(100.2e-3\)

m

\(z_1\)

half-height of torus

\(25e-3\)

m

\(r_{infty}\)

radius of infty border

\(5*r_{ext}\)

6. Initial/Boundary Conditions

We impose the Dirichlet boundary conditions :

  • For electrical potential scalar \(V\) :

    • On V0 : \(V=0\)

    • On V1 : \(V=1\)

  • For magnetic potential field \(\mathbf{A}\) :

    • On OXOZ and V0 : \(A_x = A_z = 0\), we want \(\mathbf{A}\) orthogonal to OXOZ and V0

    • On OYOZ and V1 : \(A_y = A_z = 0\), we want \(\mathbf{A}\) orthogonal to OYOZ and V1

    • Infty : We approximate the problem, Infty is the physical infty thus \(\mathbf{B}=0\) at Infty thus \(\mathbf{A} = 0\).

  • For temperature \(T\) :

    • On V0, V1, Upper and Bottom we put Neumann condition \(\frac{\partial T}{\partial \mathbf{n}} = 0\)

    • On Interior and Exterior, we put Robin condition \(k \frac{\partial T}{\partial \mathbf{n}} = h \, \left( T - T_c \right)\). It represents the cooling by water.

We initialize at \(t=0s\) :

  • \(V = 0\)

  • \(\mathbf{A} = 0\)

  • \(T = T_i\)

On JSON file, the boundary conditions are writed :

Boundary conditions on JSON file
    "BoundaryConditions":
    {
        "magnetic":
        {
            "Dirichlet":
            {
                "Infty":
                {
                    "expr":"{0,0,0}"
                }
            },
            "Dirichlet_x":
            {
                "magdirx":
                {
                    "markers":["V0","OXOZ"],
                    "expr":"0"
                }
            },
            "Dirichlet_y":
            {
                "magdiry":
                {
                    "markers":["V1","OYOZ"],
                    "expr":"0"
                }
            },
            "Dirichlet_z":
            {
                "magdirz":
                {
                    "markers":["V0","OXOZ","V1","OYOZ"],
                    "expr":"0"
                }
            }
        },
        "electric":
        {
            "Dirichlet":
            {
                "V0":
                {
                    "expr":"V0:V0"
                },
                "V1":
                {
                    "expr":"V1:V1"
                }
            }
        },
        "heat":
        {
            "Robin":
            {
                "heatrobin":
                {
                    "markers":["Interior","Exterior"],
                    "expr1":"h:h",
                    "expr2":"h*T_c:h:T_c"
                }
            }
        }
    }

On JSON file, the intial conditions are writed : .Initial conditions on JSON file

    "InitialConditions":
    {
        "temperature":
        {
            "Expression":
            {
                "Conductor":
                {
                    "expr":"T_i:T_i"
                }
            }
        }
    }

7. Weak Formulation

We obtain :

Weak Formulation
\[\scriptsize{ \text{(Weak Thermo-Mag Axis)} \begin{eqnarray*} \int_{\Omega}{ \sigma \frac{d \mathbf{A}}{d t} \mathbf{ϕ} } + \int_{\Omega}{ \frac{1}{\mu} \nabla \mathbf{A} \cdot \nabla \mathbf{ϕ} } &=& - \int_{\Omega_c}{\sigma \nabla V \, \mathbf{ϕ}} \\ \int_{\Omega_c}{ \sigma \nabla V \cdot \nabla \psi } &=& - \int_{\Omega_c}{\sigma \frac{d \mathbf{A}}{d t} \cdot \nabla \psi} \int_{\Omega_c}{ \rho C_p \, \frac{\partial T}{\partial t} \, \phi } + \int_{\Omega_c}{ k \, \nabla T \cdot \nabla \phi } = \int_{\Omega_c}{ Q \, \phi } - \int_{\Gamma_{Rc}}{ h \, (T-T_c) \, \phi } \end{eqnarray*} }\]

8. Parameters

The parameters of problem are :

  • On Conductor :

Symbol

Description

Value

Unit

\(V_0\)

scalar electrical potential on V0

\(0\)

\(Volt\)

\(V_1\)

scalar electrical potential on V0

\(\frac{1}{4}\)

\(Volt\)

\(\sigma\)

electrical conductivity

\(4.8e7\)

\(S/m\)

\(\mu=\mu_0\)

magnetic permeability of vacuum

\(4\pi.10^{-7}\)

\(kg \, m / A^2 / S^2\)

\(k\)

thermal conductivity

\(380\)

\(W/m/K\)

\(C_p\)

thermal capacity

\(380\)

\(J/K/kg\)

\(\rho\)

density

\(10000\)

\(kg/m^3\)

\(h\)

convective coefficient

\(80000\)

\(W/m^2/K\)

\(T_c\)

cooling temperature

\(293\)

\(K\)

\(T_i\)

initial temperature

\(293\)

\(K\)

  • On Air :

Symbol

Description

Value

Unit

\(\mu=\mu_0\)

magnetic permeability of vacuum

\(4\pi.10^{-7}\)

\(kg \, m / A^2 / S^2\)

On JSON file, the parmeters are writed :

Parameters on JSON file
    "Parameters":
    {
        "V0":0,
        "V1":"1/4*(t/(0.1*10)*(t<(0.1*10))+((t<(0.5*40))+0*(t>(0.5*40)))*(t>(0.1*10))):t",

        "h":80000,  // W/m2/K
        "T_c":293,  // K
        "T_i":293,  // K

        // Constants of analytical solve
        "a":1933.10,    // K
        "b":0.40041,    // K
        "rmax":0.0861910719118454,  // m
        "Tmax":364.446  // K
    }

9. Coefficient Form PDEs

We use the application Coefficient Form PDEs. The coefficient associate to Weak Formulation are :

  • For Magnetic equation of unknow \(\mathbf{A}\) :

    • On Conductor :

    Coefficient

    Description

    Expression

    \(d\)

    damping or mass coefficient

    \(\sigma\)

    \(c\)

    diffusion coefficient

    \(\frac{1}{\mu}\)

    \(f\)

    source term

    \(- \sigma \, \nabla V\)

    • On Air :

    Coefficient

    Description

    Expression

    \(c\)

    diffusion coefficient

    \(\frac{r}{\mu}\)

  • For Electric equation of unknow \(\mathbf{A}\) :

    • On Conductor :

    Coefficient

    Description

    Expression

    \(c\)

    diffusion coefficient

    \(\sigma\)

    \(\gamma\)

    source term

    \(\sigma \mathbf{A}\)

  • For heat equation (Weak Heat Axis), on Conductor (the temperature isn’t computed on Air) :

    Coefficient

    Description

    Expression

    \(d\)

    damping or mass coefficient

    \(\rho \, C_p\)

    \(c\)

    diffusion coefficient

    \(k\)

    \(f\)

    source term

    \(\sigma \, \left( \nabla V + \frac{\partial \mathbf{A}}{\partial t} \right)\)

On JSON file, the coefficients are writed :

CFPDEs coefficients on JSON file
    "Materials":
    {
        "Conductor":
        {
            "sigma":58e6,       // S.m-1
            "mu":"4*pi*1e-7",   // kg.m/A2/S2

            "magnetic_d":"sigma:sigma",
            "magnetic_c":"1/mu:mu",
            "magnetic_f":"{-sigma*electric_grad_V_0,-sigma*electric_grad_V_1,-sigma*electric_grad_V_2}:sigma:electric_grad_V_0:electric_grad_V_1:electric_grad_V_2",

            "electric_c":"sigma:sigma",
            "electric_gamma":"{sigma*magnetic_dA_dt_0,sigma*magnetic_dA_dt_1,sigma*magnetic_dA_dt_2}:sigma:magnetic_dA_dt_0:magnetic_dA_dt_1:magnetic_dA_dt_2",

            "k":380,        // W/m/K
            "rho":10000,    // kg/m3
            "Cp":380,       // J/K/kg

            "heat_c":"k:k",
            "heat_f":"materials_Conductor_sigma*((electric_grad_V_0+magnetic_dA_dt_0)*(electric_grad_V_0+magnetic_dA_dt_0)+(electric_grad_V_1+magnetic_dA_dt_1)*(electric_grad_V_1+magnetic_dA_dt_1)+(electric_grad_V_2+magnetic_dA_dt_2)*(electric_grad_V_2+magnetic_dA_dt_2)):materials_Conductor_sigma:electric_grad_V_0:electric_grad_V_1:electric_grad_V_2:magnetic_dA_dt_0:magnetic_dA_dt_1:magnetic_dA_dt_2",
            "heat_d":"rho*Cp:rho:Cp"
        },
        "Air":
        {
            "physics":"magnetic",
            "mu":"4*pi*1e-7",   // kg.m/A2/S2
            "magnetic_c":"1/mu:mu"
        }
    }

10. Numeric Parameters

This section show the parameters used to compute the simulation.

  • Size of mesh : \(5 \, mm\)

  • Time Parameters :

    • Time step : I use adaptative time step. Near of brutal changement of current, the time step is little, in other case, the time step is big. I put adaptative time step to have good precision near of changement (cut of current at \(t=22s\)) and to not explose the time of compute. The shell script feelpp_adaptative.sh implements that.

      \(\Delta_t = \left\{ \begin{matrix} 0.1s \, \text{for} \, 0s<t<0.9s \\ 0.008s \, \text{for} \, 0.9s<t<1.1s \\ 0.1s \, \text{for} \, 1.1s<t<19.9s \\ 0.008s \, \text{for} \, 19.9s<t<20.1s \\ 0.1 \, \text{for} \, 20.1s<t<22s \end{matrix} \right.\)

    • Initial Time : \(0 \, s\)

    • Final Time : \(22 \, s\)

  • Element type : \(P1\) for three equation (\(\mathbf{A}\), \(V\) and \(T\))

1torus 3d mesh
Mesh of Geometry

11. Exact solutions

11.1. Intensity

In this subsection, we see the analytical compute of intensity.

We have :

\[ U = R \, I + L \, \frac{dI}{dt} \hspace{2cm} \text{(Intensity)}\]
In stationary case we have \(U = R \, I\).

And :

\[ U = \left\{ \begin{matrix} t & \text{ for } 0s \leq t \leq 1s \\ 1 & \text{ for } 1s \leq t \leq 20s \\ 0 & \text{ for } 20 \leq t \\ \end{matrix} \right.\]
  • Resolution of first part (\(0s \leq t \leq 1s\)) :

\[ R \, I + L \, \frac{dI}{dt} = t \hspace{2cm} \text{(Intensity-1)}\]

The homogenous equation \(R \, I_0 + L \, \frac{dI_0}{dt} = 0\) have a solve : \(I_0(t) = e^{-\frac{R}{L}t}\)

We pose \(C(t)\), such that \(I(t) = C(t) \, I_0(t) = C(t) \, e^{-\frac{R}{L}t}\) is solution of equation (Intensity-1).

\[\begin{eqnarray*} R \, C(t) \, e^{-\frac{R}{L}t} + L \, \left( \frac{dC}{dt}(t) e^{-\frac{R}{L}t} - \frac{R}{L} \, C(t) \, e^{-\frac{R}{L}t} \right) &=& t \\ 0 + L \frac{dC}{dt}(t) e^{-\frac{R}{L}t} &=& t \\ \frac{dC}{dt}(t) &=& \frac{1}{L} \, t \, e^{\frac{R}{L}t} \\ \end{eqnarray*}\]

Thus :

\[\begin{eqnarray*} C(t) &=& \int_{\tau = 0}^t{ \frac{1}{L} \, \tau \, e^{\frac{R}{L} \tau}} \\ &=& \left[ \frac{1}{L} \, \tau \, \frac{L}{R} \, e^{\frac{R}{L} \tau} \right]_{\tau=0}^t - \int_{\tau=0}^t{ \frac{1}{L} \frac{L}{R} e^{\frac{R}{L} \tau} } \text{ by integration by part} \\ &=& \frac{1}{R} \, t \, e^{\frac{R}{L} t} - \left[ \frac{1}{L} \, \left( \frac{L}{R} \right)^2 \, e^{\frac{R}{L}\tau} \right]_{\tau=0}^t \\ &=& \frac{1}{R} \, t \, e^{\frac{R}{L} t} - \frac{1}{L} \, \left( \frac{L}{R} \right)^2 \, \left(e^{\frac{R}{L} t} - 1 \right) \end{eqnarray*}\]

Thus :

\[\begin{eqnarray*} I(t) &=& C(t) \, e^{\frac{R}{L} t} \\ &=& \frac{1}{R} \, t - \frac{1}{L} \, \left( \frac{L}{R} \right)^2 \, \left( 1 - e^{-\frac{R}{L} t} \right) \\ &=& \frac{1}{L} \left( \frac{L}{R} \, t - \left( \frac{L}{R} \right)^2 \, \left( 1 - e^{-\frac{R}{L} t} \right) \right) \end{eqnarray*}\]
  • Resolution of second part (\(1s \leq t \leq 20s\)) :

\[ R \, I + L \, \frac{dI}{dt} = 1 \hspace{2cm} \text{(Intensity-2)}\]

An evident solution is :

\[ I(t) = C_1 \, e^{-\frac{R}{L} t} + 1 \text{ with } C_1 \text{ a constant}\]
  • Resolution of third part (\(20s \leq t\)) :

\[ R \, I + L \, \frac{dI}{dt} = 0 \hspace{2cm} \text{(Intensity-3)}\]

An evident solution is :

\[ I(t) = C_2 \, e^{-\frac{R}{L} t} \text{ with } C_2 \text{ a constant}\]

To conclude, we have :

\[ I(t) = \left\{ \begin{matrix} \frac{1}{L} \, \left( \frac{L}{R} t - \left( \frac{L}{R} \right)^2 \left( 1 -e^{-\frac{R}{L}t} \right) \right) & \text{ for } 0s \leq t \leq 1s \\ C_1 \, e^{-\frac{R}{L} t} + 1 & \text{ for } 1s \leq t \leq 20s \\ C_2 \, e^{-\frac{R}{L} t} & \text{ for } 20s \leq t \end{matrix} \right.\]

12. Result

The analytical solve of potential magnetic field and magnetic field (the cyan curve on plots) is computed by python3’s module MagnetTools.MagnetTools. The module based on paper : spire.

The analytical solve of intensity (and magnetic field) is computed on python3’s script Edit the file.

12.1. Intensity

Feelpp compute in post-process, the intensity of circuit :

\[\begin{eqnarray*} I(t) &=& \int_{\Omega_c \cap OrOz}{ \mathbf{J} \cdot \mathbf{n} \ ds } \\ &=& \int_{\Omega_c^{axis}}{ \sigma \left( \frac{1}{r} \frac{U}{2\pi} + \frac{1}{r} \frac{\partial \Phi}{\partial t} \right) \, drdz } \end{eqnarray*}\]

The intensity verify the equation :

\[ U(t) = R \, I(t) + L \, \frac{d I}{d t} \hspace{1cm} \text{(intensity)}\]

With \(R\) the resistance of torus of conductor and \(L\) the inductance of conductor.

In case of a rectangular cross section \((r_{int},r_{ext}) \times (z_1,z_2)\) torus, we can show that :

\[ R = \frac{2\pi \, r_{int} \, \rho}{r_{int} \, ln(\frac{r_{ext}}{r_{int}}) \, (z_1 - z_2)} = \frac{2\pi \, \rho}{ln(\frac{r_{ext}}{r_{int}}) \, (z_1 - z_2)}\]

We have the value :

Symbol

Description

Value

Unit

R

resistance of torus

\(7.5313 \times 10^{-6}\)

Ohm

L

inductance of torus

\(1.9204 \times 10^{-7}\)

Henry

The exact solution is (see the subsection Intensity for more detail) :

\[ I(t) = \left\{ \begin{matrix} \frac{1}{L} \, \left( \frac{L}{R} t - \left( \frac{L}{R} \right)^2 \left( 1 -e^{-\frac{R}{L}t} \right) \right) & \text{ for } 0s \leq t \leq 1s \\ C_1 \, e^{-\frac{R}{L} t} + 1 & \text{ for } 1s \leq t \leq 20s \\ C_2 \, e^{-\frac{R}{L} t} & \text{ for } 20s \leq t \end{matrix} \right.\]
I t
Intensity of current \(I(A)\)

In stationary case, we have the Ohm law :

\[ U(t \approx \infty) = R \, I(t \approx \infty)\]

With this relation, we have theorycal intensity : \(I_{th} = \frac{U}{R} = -132779 \, A\). And with numeric solve, we have \(I_{num} = -1.3376228966881469e+05 \, A\), so an error of \(7.4e-3 \, A\).

12.2. Magnetic field \(B_z\)

Recall, with axisymmetric condition :

\[ \mathbf{B} = \begin{pmatrix} B_r \\ 0 \\ B_z \end{pmatrix}_{cyl} = \nabla \times \mathbf{A} = \begin{pmatrix} - \frac{\partial A_{\theta}}{\partial z} \\ 0 \\ \frac{1}{r} \frac{\partial \left( r \, A_{\theta} \right)}{\partial z} \end{pmatrix}\]

Thus \(B_z = \frac{1}{r} \frac{\partial \Phi}{\partial r} \).

  • On \(Or\) axis at \(t=20s\)

Bz Or t20s
Horizontal Magnetic Field \(B_z(T)\) on Or
  • On origin \((0,0,0)\) across the time

Bz P0 t
"Horizontal Magnetic Field \(B_z(T)\)
  • Magnetic Field across the time :

Horizontal Magnetic Field \(B_z(T)\)

12.3. Electrical value

elec
"Some electical value \(U(V/rad),I(A)\)

12.4. Temperature \(T (K)\)

  • On \(Or\) axis at \(t=20s\)

T Or t20s
Temperature \(T(K)\) on Or
  • On point \((r_0=0.086m,0,0)\) in time

Tmax t
Maximal Temperature \(T_{max} (K)\)
  • Temperature across the time :

Temperature \(T(T=K)\)

13. Validation

We can see on previous plot, the curve of electrical value (intensity, magnetic field, magnetic potential field) overlap with analytical results.