Vector Analysis
1. Basic
1.1. Vector fields
Vector field is an application :
A vector field is usually continuous and infinitely differentiable.
1.2. Tensor of order two
A tensor of order two is an bilinear application on \(\mathbb{R}^3\) :
With \(\left( \mathbb{R}^3 \right)^*\) the dual of \(\mathbb{R}^3\).
A tensor of order two on \(\mathbb{R}^3\) can be represented by a matrix \(3 \times 3\) :
With \({T^i}_j = T(e_i,e^j)\), \(\left( e_1, \, e_2, \, e_3 \right)\) a basis of \(\mathbb{R}^3\) and \(\left( e^1, \, e^2, \, e^3 \right)\) a basis of \(\left( \mathbb{R}^3 \right)^*\). With this notation, we have :
-
Representation in cartesian coordinates \(\left( e_x, \, e_y, \, e_z \right)\)
-
Representation in cylindric coordinates \(\left( e_r, \, e_{\theta}, \, e_z \right)\)
1.3. Scalar Product
The cross product is an application \((. \cdot . ) : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}\) :
Some propertie of scalar product :
-
\(\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \cdot \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \cdot \mathbf{u})\)
1.4. Cross Product
The cross product is an application \(\cdot \times \cdot : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}^3\) :
Some properties of cross product :
-
bilinear
-
\(\mathbf{u} \times \mathbf{v} = - \mathbf{v} \times \mathbf{u}\)
-
\(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})\)
2. Analysis
2.1. Gradient
\(\nabla\) can see as :
In \(\mathbb{R}^3\) (\(\mathbf{u} : \mathbb{R}^3 \rightarrow \mathbb{R}^3\)) :
-
In Cartesian coordinates :
-
In Cylindric coordinates :
2.2. Divergence
2.2.1. Vector Field
Thus a vector field \(u\) on \(\mathbb{R}^3\) :
In cartesian coordinates, in inferior dimensions :
-
\(d=1\) : \(\nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x}\)
-
\(d=2\) : \(\nabla \cdot \mathbf{u}(x,y) = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y}\) (with \(u = \begin{pmatrix} u_x \\ u_y \end{pmatrix}\))
-
\(d=3\) : \(\nabla \cdot \mathbf{u}(x,y,z) = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}\) (with \(u = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}\))
In cylindric coordinates in three dimensions \((r,\theta,z)\) (\(d=3\)) :
Thus a vector field \(\mathbf{u} = \begin{pmatrix} u_r \\ u_{\theta} \\ u_z \end{pmatrix}_{cyl}\) on \(\mathbb{R}^3\) :
2.2.2. Tensor of Order Two
Thus \(T\) a tensor of order two of \(\mathbb{R}^3\)
Thus \(T\) a tensor of order two of \(\mathbb{R}^3\)
2.3. Laplacian
2.3.1. Scalar
Thus \(f: \mathbb{R}^3 \rightarrow \mathbb{R}\) :
Thus \(f: \mathbb{R}^3 \rightarrow \mathbb{R}\) :
2.3.2. Vector Field
Thus \(\mathbf{u}: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) :
Thus \(\mathbf{u}: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) :
2.4. Curl
Thus vector field \(u = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}\) in 3 dimension (\(d=3\)) :
In cylindric coordinates, the formulate become :
Thus vector field \(u = \begin{pmatrix} u_r \\ u_{\theta} \\ u_z \end{pmatrix}\) in 3 dimension (\(d=3\)) :
2.5. Relation
Some relations exist between \(grad\), \(div\) and \(curl\) :
-
\(\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\nabla \times \mathbf{u}) - \mathbf{u} \cdot (\nabla \times \mathbf{v})\)
-
\(\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \cdot \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \cdot \mathbf{u})\)
-
\(\nabla \cdot (\mathbf{u} \cdot \mathbf{v}) = \mathbf{v} \cdot \nabla \mathbf{u} + \mathbf{u} \cdot \nabla \cdot \mathbf{v}\)
3. Documentation
-
Calcul Tensoriel, Download the PDF