Geometry Tools
1. Cartesian coordinates
The cartesian landmark is noted \(\left( \mathbf{e_x}, \, \mathbf{e_y}, \, \mathbf{e_z} \right)\).
2. Cylindrical coordinates
2.1. Presentation
The function of changing variables from cylindrical to cartesian is :
And :
We have the Jacobian :
And :
The passage to cartesian landmark \(\left( \mathbf{e_x}, \, \mathbf{e_y}, \, \mathbf{e_z} \right)\) to cylindrical landmark \(\left( \mathbf{e_r}, \, \mathbf{e_{\theta}}, \, \mathbf{e_z} \right)\) :
The passage matrix is :
2.2. Formula of changement of variable
Set matrix \(M = \begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix}\).
We pass in cylindric coordinates :
3. Axisymmetrical coordinates
An axisymmetric geometry is a geometry symmetrical to an axis.
If we place the cylindrical landmark such as the axis of symmetry is \(Oz\) axis, the geometry is independent by \(\theta\). The geometry can be described in two dimensions in axisymmetric coordinates \((r, z)\).
For example :
-
A cylinder becomes a rectangle
-
A cone becomes a triangle
The axisymmetric landmark can be expressed as : \((\mathbf{e_r}, \mathbf{e_z})\).
3.1. Formula of changement of coordinates
The formula of changement to cartesian to cylindric coordinates :
Thus \(u = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} = \begin{pmatrix} u_r \\ u_{\theta} \\ u_z \end{pmatrix}\) :