Test Case of Elasto-Magnetism in Stationary and Axisymmetrical Case

1. Introduction

This page presents the simulation and result of page Elastic Equations with Electromagnetism and Thermic in Axisymmetrical case : Elastic and Electromagnetism problem coupled by Laplace Force in stationnary and axisymmetrical case.

2. Run the calculation

The command line to run this case is :

    mpirun -np 16 feelpp_toolbox_coefficientformpdes --config-file=elasto-thermo-mag.cfg --cfpdes.gmsh.hsize=5e-3

To compute with the Laplace Force and the Thermal Dilatation, please, put :

        "bool_laplace":1,
        "bool_dilatation":1,

On Parameter function of .json file elasto-thermo-mag.json.

3. Data Files

The case data files are available in Github here :

4. Equation

In this subsection, we couple the equation (Static Elasticity Axis) of Elastic equation and (AV Axis) AV-Formulation in axisymmetrical coordinates.

The domain of resolution of electromagnetism part is \(\Omega^{axis}\) with bounds \(\Gamma^{axis}\), \(\Gamma_D^{axis}\) the bound of Dirichlet conditions and \(\Gamma_N^{axis}\) the bound of Neumann conditions such that \(\Gamma^{axis} = \Gamma_N^{axis} \cup \Gamma_D^{axis}\).

The domain of resolution of elastic part is \(\Omega_c^{axis} \subset \Omega^{axis}\) (and the domain of definition of electrical potential \(V\) and electrical conductivity \(\sigma\)) with bounds \(\Gamma_c^{axis}\), \(\Gamma_{D \hspace{0.05cm} elas}^{axis}\) the bound of Dirichlet conditions and \(\Gamma_{N \hspace{0.05cm} elas}^{axis}\) the bound of Neumann conditions such that \(\Gamma_c^{axis} = \Gamma_{D \hspace{0.05cm} elas}^{axis} \cup \Gamma_{N \hspace{0.05cm} elas}^{axis}\). The domain \(\Omega_c^{axis}\) correspond to the conductor.

Differential Formulation of Elastic Thermic Electromagnetism Equations
\[\small{ \text{(Elasto-Thermo-Elec)} \\ \left\{ \begin{align*} \nabla \times \left( \frac{1}{\mu} \nabla \times \textbf{A} \right) + \sigma(T) \frac{\partial \textbf{A}}{\partial t} + \sigma(T) \nabla V &= 0 & \text{ on } \Omega & \text{(AV-1)} \\ \nabla \cdot \left( \sigma(T) \nabla V + \sigma(T) \frac{\partial \textbf{A}}{\partial t} \right) &= 0 & \text{ on } \Omega_c & \text{(AV-2)} \\ \rho C_p \, \frac{\partial T}{\partial t} - k(T) \Delta T &= \sigma(T) \left( \nabla V + \frac{\partial \mathbf{A}}{\partial t} \right) \cdot \left( \nabla V + \frac{\partial \mathbf{A}}{\partial t} \right) & \text{ on } \Omega_c & \text{(Heat-1)} \\ \frac{\partial \mathbf{p}}{\partial t} - \nabla \cdot \bar{\bar{\sigma}} &= \sigma(T) \, \left( - \nabla V - \frac{d \mathbf{A}}{dt} \right) \times \left( \nabla \times \mathbf{A} \right) & \text{on } \Omega_c & \text{(Elas-1)} \\ \mathbf{A} \times \mathbf{n} &= 0 & \text{ on } \Gamma_D & \text{(AV-D)} \\ \left( \nabla \times \mathbf{A} \right) \times \mathbf{n} &= 0 & \text{ on } \Gamma_N & \text{(AV-N)} \\ \frac{\partial T}{\partial \mathbf{n}} &= 0 & \text{ on } \Gamma_{Nc} & \text{(Heat-N)} \\ - k(T) \, \frac{\partial T}{\partial \mathbf{n}} &= h \, \left( T - T_c \right) & \text{ on } \Gamma_{Rc} & \text{(Heat-R)} \\ \mathbf{u} &= \mathbf{u_0} & \text{on } \Gamma_{D \hspace{0.05cm} elas} & \text{(Elas-D)} \\ \bar{\bar{\sigma}} \cdot \mathbf{n} &= g_N & \text{on } \Gamma_{N \hspace{0.05cm} elas} & \text{(Elas-N)} \\ \end{align*} \right. }\]

With :

  • Magnetic Potential Field \(\mathbf{A}\)

  • Temperature \(T\)

  • Electrical Potential Scalar \(V\)

  • Thermal Conductivity \(k(T)=\frac{k_0}{1+\alpha (T-T_0)} \frac{T}{T_0}\)

  • Electrical Conductivity \(\sigma(T)=\frac{\sigma_0}{1+\alpha (T-T_0)}\)

  • Density \(\rho\)

  • Thermal Capacity \(C_p\)

  • Cooling Temperature \(T_c\)

  • Reference Temperature \(T_0\)

  • Displacement \(\mathbf{u}\)

  • Momentum \(\mathbf{p} = \frac{\partial \left( \rho \, \mathbf{u} \right)}{\partial t}\)

  • The tensor of small deformations \(\bar{\bar{\epsilon}} = \frac{1}{2} \left( \nabla \mathbf{u} + \nabla \mathbf{u}^T \right)\)

  • Stress Tensor \(\bar{\bar{\sigma}}(\bar{\bar{\epsilon}}) = \bar{\bar{\sigma}}^E(\bar{\bar{\epsilon}})\)

  • Lamé’s coefficients : \(\lambda = \frac{E \, v}{(1-2 v) \, (1+v)}\), \(\mu = \frac{E}{2 \, (1+v)}\) with the Young modulus \(E\) and Poisson’s coefficient \(v\)

And notations :

  • Divergence of tensor : \(\nabla \cdot \bar{\bar{\sigma}} = \begin{pmatrix} \nabla \cdot \bar{\bar{\sigma}}_{r,:} + \frac{\bar{\bar{\sigma}}_{rr} - \bar{\bar{\sigma}}_{\theta \theta}}{r} \\ \nabla \cdot \bar{\bar{\sigma}}_{z,:} + \frac{\bar{\bar{\sigma}}_{rz}}{r} \end{pmatrix}\)

  • Scalar produce of tensor : \(\bar{\bar{\sigma}} \cdot \mathbf{n} = \begin{pmatrix} \bar{\bar{\sigma}}_{r,:} \cdot \mathbf{n}^{axis} \\ \bar{\bar{\sigma}}_{z,:} \cdot \mathbf{n}^{axis} \end{pmatrix} = \begin{pmatrix} \bar{\bar{\sigma}}_{rr} \, n_r + \bar{\bar{\sigma}}_{rz} \, n_z \\ \bar{\bar{\sigma}}_{zr} \, n_r + \bar{\bar{\sigma}}_{zz} \, n_z\end{pmatrix}\)

The equation become coupled in one senses, the second equation (Elas-1 Axis) depends of potentials.
We don’t care of geometrical deformation which can change the mesh or the density. We suppose the geometry is fixed.

5. Geometry

The geometry is a torus of the conductor in cartesian coordinates \((x,y,z)\) or rectangle in axisymmetric coordinates \((r,z)\), surrounded by air.

1torus axis(1)
Geometry in axisymmetrical cut loop on Conductor
1torus axis(2)
Geometry in axisymmetrical cut
1torus 3d(1)
Geometry in three dimensions
1torus 3d(2)
Geometry in three dimensions cut loop on Conductor

The geometrical domains are :

  • Conductor : the torus is composed by conductor material

    • Interior : interior surface of conductor ring

    • Exterior : exterior surface of conductor ring

    • Upper : upper of conductor ring

    • Bottom : bottom of conductor ring

  • Air : the air surround Conductor

    • zAxis : a bound of Air, correspond to \(Oz\) axis (\(\{(z,r), \, z=0 \}\))

    • infty : the rest of bound of Air

Symbol

Description

value

unit

\(r_{int}\)

interior radius of torus

\(75e-3\)

m

\(r_{ext}\)

exterior radius of torus

\(100.2e-3\)

m

\(z_1\)

half-height of torus

\(300e-3\)

m

\(r_{infty}\)

radius of infty border

\(5*r_{ext}\)

m

6. Boundary Conditions

We impose the boundary conditions :

  • Magnetic Equation :

    • Strong Dirichlet :

      • On zAxis : \(\Phi = 0\) (\(A_{\theta} = 0\) by symetric argument)

      • On infty : \(\Phi = 0\) (\(A_{\theta} = 0\) we consider the bound of resolution like infty for magnetic field)

  • Heat Equation :

    • Neumann : \(\frac{\partial T}{\partial \mathbf{n}} = 0\) on Interior and Exterior

    • Robin : \(-k \, \frac{\partial T}{\partial \mathbf{n}} = h \, \left( T - T_c \right)\) on Upper and Bottom. The Robin condition represents the cooling by water.

  • Elastic Equation :

    • Strong Dirichlet : \(\mathbf{u} = 0\) on Upper and Bottom. The Dirichlet condition represents the embedding of mechanical part.

    • Neumann : \(\bar{\bar{\sigma}} \cdot \mathbf{n} = 0\) on Interior and Exterior. The Neumann condition represents the freedom of displacement.

On JSON file, the boundary conditions are writed :

Boundary conditions on JSON file
    "BoundaryConditions":
    {
        "magnetic":
        {
            "Dirichlet":
            {
                "magdir":
                {
                    "markers":["ZAxis","Infty"],
                    "expr":"0"
                }
            }
        },
        "heat":
        {
            "Robin":
            {
                "heatdir":
                {
                    "markers":["Interior","Exterior"],
                    "expr1":"h*x:h:x",
                    "expr2":"h*T_c*x:h:T_c:x"
                }
            }
        },
        "elastic":
        {
            "Dirichlet":
            {
                "elasdir":
                {
                    "markers":["Upper","Bottom"],
                    "expr":"{0,0}"
                }
            }
        }
    }

7. Weak Formulation

We obtain :

Weak Formulation of Elastic Thermic Electromagnetism Equations in Stationnary Case Vectorial
\[\tiny{ \text{(Weak Elas-Heat-AV Static)} \\ \begin{eqnarray*} \int_{\Omega}{\frac{1}{\mu} (\nabla \times \textbf{A}) \cdot (\nabla \times \mathbf{ϕ})} + \int_{\Omega_c}{ \sigma \nabla V \cdot \mathbf{ϕ} } + \int_{\Omega}{ \sigma \frac{d \mathbf{A}}{d t} \cdot \mathbf{ϕ} } &=& 0 &\text{(Weak AV-1)} \\ \int_{\Omega_c}{\sigma (\nabla V + \frac{d \mathbf{A}}{d t}) \cdot \nabla \mathbf{\psi}} &=& 0 & \text{(Weak AV-2)} \\ \int_{\Omega_c}{ k \, \nabla T \cdot \nabla \eta } + \int_{\Gamma_R}{ h \, T \, \eta } &=& \int_{\Omega_c}{ Q \, \eta } + \int_{\Gamma_R}{ h \, T_c \, \eta } & \text{(Weak Heat Axis)} \\ \int_{\Omega_c}{ \bar{\bar{\sigma}}_{xx} \, \frac{\partial \xi_x}{\partial x} + \bar{\bar{\sigma}}_{xy} \, \frac{\partial \xi_x}{\partial y} + \bar{\bar{\sigma}}_{xz} \, \frac{\partial \xi_x}{\partial z} + \bar{\bar{\sigma}}_{yx} \, \frac{\partial \xi_y}{\partial x} + \bar{\bar{\sigma}}_{yy} \, \frac{\partial \xi_y}{\partial y} + \bar{\bar{\sigma}}_{yz} \, \frac{\partial \xi_y}{\partial z} + \bar{\bar{\sigma}}_{zx} \, \frac{\partial \xi_z}{\partial x} + \bar{\bar{\sigma}}_{zy} \, \frac{\partial \xi_z}{\partial y} + \bar{\bar{\sigma}}_{zz} \, \frac{\partial \xi_z}{\partial z} } &=& \int_{\Omega_c}{ \mathbf{F}_{laplace} \cdot \mathbf{ξ} } + \int_{\Gamma_{N \hspace{0.05cm} elas}}{ \mathbf{g_N} \cdot \mathbf{ξ} } + \int_{\Gamma_{R \hspace{0.05cm} elas}}{ \left( \mathbf{g_R} - ku \right) \cdot \mathbf{ξ} } & \text{(Weak Elas)} \\ \text{for } \mathbf{ϕ} \in H^1(\Omega)^2, \ \psi \in H^1(\Omega_c) , \ \eta \in H^1(\Omega_c) \ \xi = \begin{pmatrix} \xi_x \\ \xi_y \\ \xi_z \end{pmatrix} \in H^1(\Omega_c)^2 \ && \text{and} \ \mathbf{F}_{laplace} = \begin{pmatrix} F_{laplace \, x} \\ F_{laplace \, y} \\ F_{laplace \, z} \end{pmatrix} = - \sigma \, \nabla V \times \left( \nabla \times \mathbf{A} \right) \end{eqnarray*} }\]

8. Parameters

The parameters of problem are :

  • On Conductor :

Symbol

Description

Value

Unit

\(V_0\)

scalar electrical potential on V0

\(0\)

\(Volt\)

\(V_1\)

scalar electrical potential on V0

\(\frac{1}{4} \times 0.2\)

\(Volt\)

\(\sigma\)

electrical conductivity

\(58e6\)

\(S/m\)

\(\mu=\mu_0\)

magnetic permeability of vacuum

\(4\pi.10^{-7}\)

\(kg.m/A^2/S^2\)

\(k\)

thermal conductivity

\(380\)

\(W/m/K\)

\(C_p\)

thermal capacity

\(380\)

\(J/K/kg\)

\(\rho\)

density

\(10000\)

\(kg/m^3\)

\(h\)

convective coefficient

\(80000\)

\(W/m^2/K\)

\(T_c\)

cooling temperature

\(293\)

\(K\)

\(T_0\)

temperature of reference or rest temperature

\(293\)

\(K\)

\(E\)

Young Modulus

\(2.1e6\)

\(Pa\)

\(\nu\)

Poisson’s coefficient

\(0.33\)

\(dimensionless\)

\(Lame\_\lambda\)

Lame’s coefficient

\(\frac{E \, v}{(1-2v)(1+v)}\)

\(Pa\)

\(Lame\_\mu\)

Lame’s coefficient

\(\frac{E}{2 (1+v)}\)

\(Pa\)

\(\alpha_T\)

linear coefficient of dilatation

\(17e-6\)

\(K^{-1}\)

\(\sigma_T = -\frac{E}{1-2*nu} alpha_T (T-T0)\)

thermal dilatation term

\(\frac{E}{2 (1+v)}\)

\(Pa\)

  • On Air :

Symbol

Description

Value

Unit

\(\mu=\mu_0\)

magnetic permeability of vacuum

\(4\pi.10^{-7}\)

\(kg \, m / A^2 / S^2\)

On JSON file, the parmeters are writed :

Parameters on JSON file
    "Parameters":
    {
        "bool_laplace":1,
        "bool_dilatation":1,

        "h":80000,      // W/m2/K
        "T_c":293,      // K
        "T0":293,       // K

        // Constants of analytical solve
        "a":77.32,      // K
        "b":0.40041,    // K
        "rmax":0.0861910719118454,  // m
        "Tmax":295.85   // K
    }

9. Coefficient Form PDEs

We use the application Coefficient Form PDEs. The coefficient associate to Weak Formulation are :

  • For MQS equation (Weak MQS Axis) :

    • On Conductor :

    Coefficient

    Description

    Expression

    \(c\)

    diffusion coefficient

    \(\frac{1}{\mu}\)

    \(f\)

    source term

    \(- \sigma \, \nabla V\)

    • On Air :

    Coefficient

    Description

    Expression

    \(c\)

    diffusion coefficient

    \(\frac{1}{\mu}\)

  • For heat equation, on Conductor (the temperature isn’t computed on Air)

Coefficient

Description

Expression

\(c\)

diffusion coefficient

\(k\)

\(f\)

source term

\(\sigma \Vert \nabla V \Vert\)

  • For elastic equation, on Conductor (the displacement isn’t computed on Air) :

    Coefficient

    Description

    Expression

    \(c\)

    diffusion coefficient

    \(Lame\_\mu\)

    \(\gamma\)

    conservative flux source term

    \(\begin{pmatrix} - Lame\_\lambda \nabla \cdot \mathbf{u} - Lame\_\mu \frac{\partial u_x}{\partial x} - \sigma_T & -Lame\_\mu \frac{\partial u_y}{\partial x} & -Lame\_\mu \frac{\partial u_z}{\partial x} \\ -Lame\_\mu \frac{\partial u_x}{\partial y} & - Lame\_\lambda \nabla \cdot \mathbf{u} - Lame\_\mu \frac{\partial u_y}{\partial y} - \sigma_T & -Lame\_\mu \frac{\partial u_z}{\partial y} \\ -Lame\_\mu \frac{\partial u_x}{\partial z} & -Lame\_\mu \frac{\partial u_y}{\partial z} & - Lame\_\lambda \nabla \cdot \mathbf{u} - Lame\_\mu \frac{\partial u_z}{\partial z} - \sigma_T \end{pmatrix}\)

    \(f\)

    source term

    \(\mathbf{F_{laplace}} = \begin{pmatrix} \frac{\partial V}{\partial y} \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) + \frac{\partial V}{\partial z} \left( - \frac{\partial A_z}{\partial y} + \frac{\partial A_y}{\partial z} \right) \\ \frac{\partial V}{\partial x} \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) - \frac{\partial V}{\partial z} \left( - \frac{\partial A_z}{\partial y} + \frac{\partial A_y}{\partial z} \right) \\ \frac{\partial V}{\partial x} \left( -\frac{\partial A_z}{\partial x} + \frac{\partial A_x}{\partial z} \right) + \frac{\partial V}{\partial y} \left( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \end{pmatrix}\)

On JSON file, the coefficients are writed :

CFPDEs coefficients on JSON file
   "Materials":
    {
        "Conductor":
        {
            // Magnetic Part
            "U":0.2,            // Volt
            "sigma":58e+6,      // S.m-1
            "mu":"4*pi*1e-7",   // kg.m/A2/S2

            "j_th":"-sigma*U/2/pi/x:sigma:U:x",

            "magnetic_c":"x/mu:x:mu",
            "magnetic_beta":"{2/mu,0}:mu",
            "magnetic_f":"-sigma*U/2/pi*x:sigma:U:x",

            // Heat Part
            "k":380,            // W/m/K
            "heat_c":"k*x:k:x",
            "heat_f":"sigma*U/(2*pi)*U/(2*pi)/x:sigma:U:x",

            // Elastic Part
            "E":2.1e6,          // Pa
            "v":0.33,           // dimensionless
            "alpha_T":"17e-6",  // K-1

            "Lame_lambda":"E*v/(1-2*v)/(1+v):E:v",
            "Lame_mu":"E/(2*(1+v)):E:v",

            "F_laplace":"{1/x*j_th*magnetic_grad_phi_0, 1/x*j_th*magnetic_grad_phi_1}::x:j_th:magnetic_grad_phi_0:magnetic_grad_phi_0:magnetic_grad_phi_1",
            "sigma_T":"-(3*Lame_lambda+2*Lame_mu)*alpha_T*(heat_T-T0):Lame_lambda:Lame_mu:alpha_T:heat_T:T0",

            "elastic_c":"x*Lame_mu:x:Lame_mu",
            "elastic_gamma":"{-Lame_lambda*(x*elastic_grad_u_00+elastic_u_0+x*elastic_grad_u_11)-x*Lame_mu*elastic_grad_u_00-bool_dilatation*x*sigma_T, -x*Lame_mu*elastic_grad_u_10, -x*Lame_mu*elastic_grad_u_01, -Lame_lambda*(x*elastic_grad_u_00+elastic_u_0+x*elastic_grad_u_11)-x*Lame_mu*elastic_grad_u_11-bool_dilatation*x*sigma_T}:bool_dilatation:x:Lame_lambda:Lame_mu:elastic_u_0:elastic_grad_u_00:elastic_grad_u_01:elastic_grad_u_10:elastic_grad_u_11:sigma_T",
            "elastic_f":"{bool_laplace*x*F_laplace_0-Lame_lambda*elastic_grad_u_00-(Lame_lambda+2*Lame_mu)*elastic_u_0/x-Lame_lambda*elastic_grad_u_11-bool_dilatation*sigma_T, bool_laplace*x*F_laplace_1}:bool_laplace:bool_dilatation:x:F_laplace_0:F_laplace_1:Lame_mu:Lame_lambda:elastic_u_0:elastic_grad_u_00:elastic_grad_u_01:elastic_grad_u_11:sigma_T",

            "sigma_rr":"(Lame_lambda+2*Lame_mu)*elastic_grad_u_00+Lame_lambda*elastic_u_0/x+Lame_lambda*elastic_grad_u_11+bool_dilatation*sigma_T:bool_dilatation:Lame_lambda:Lame_mu:x:elastic_u_0:elastic_grad_u_00:elastic_grad_u_11:elastic_grad_u_22:sigma_T",
            "sigma_thth":"Lame_lambda*elastic_grad_u_00+(Lame_lambda+2*Lame_mu)*Lame_lambda*elastic_u_0/x+Lame_lambda*elastic_grad_u_11+bool_dilatation*sigma_T:bool_dilatation:Lame_lambda:Lame_mu:x:elastic_u_0:elastic_grad_u_00:elastic_grad_u_11:elastic_grad_u_22:sigma_T",
            "sigma_zz":"Lame_lambda*elastic_grad_u_00+Lame_lambda*Lame_lambda*elastic_u_0/x+(Lame_lambda+2*Lame_mu)*elastic_grad_u_11+bool_dilatation*sigma_T:bool_dilatation:Lame_lambda:Lame_mu:x:elastic_u_0:elastic_grad_u_00:elastic_grad_u_11:elastic_grad_u_22:sigma_T",
            "sigma_rz":"Lame_mu*(elastic_grad_u_01+elastic_grad_u_10):Lame_mu:elastic_grad_u_01:elastic_grad_u_10",

            "sigma_1":"Lame_lambda/x*elastic_u_0+(Lame_lambda+Lame_mu)*(elastic_grad_u_00+elastic_grad_u_11)+bool_dilatation*sigma_T+Lame_mu*sqrt((elastic_grad_u_00-elastic_grad_u_11)*(elastic_grad_u_00-elastic_grad_u_11)+4*(elastic_grad_u_01+elastic_grad_u_10)*(elastic_grad_u_01+elastic_grad_u_10)):bool_dilatation:x:Lame_lambda:Lame_mu:elastic_u_0:elastic_grad_u_00:elastic_grad_u_11:elastic_grad_u_01:elastic_grad_u_10:sigma_T",
            "sigma_2":"Lame_lambda*elastic_grad_u_00+(Lame_lambda+2*Lame_mu)/x*elastic_u_0+Lame_lambda*elastic_grad_u_11+bool_dilatation*sigma_T:bool_dilatation:x:Lame_lambda:Lame_mu:elastic_u_0:elastic_grad_u_00:elastic_grad_u_11:sigma_T",
            "sigma_3":"Lame_lambda/x*elastic_u_0+(Lame_lambda+Lame_mu)*(elastic_grad_u_00+elastic_grad_u_11)+bool_dilatation*sigma_T-Lame_mu*sqrt((elastic_grad_u_00-elastic_grad_u_11)*(elastic_grad_u_00-elastic_grad_u_11)+4*(elastic_grad_u_01+elastic_grad_u_10)*(elastic_grad_u_01+elastic_grad_u_10)):bool_dilatation:x:Lame_lambda:Lame_mu:elastic_u_0:elastic_grad_u_00:elastic_grad_u_11:elastic_grad_u_01:elastic_grad_u_10:sigma_T"
        },
        "Air":
        {
            "physics":"magnetic",
            "mu":"4*pi*1e-7",   // kg.m/A2/s2
            "magnetic_c":"x/mu:x:mu",
            "magnetic_beta":"{2/mu,0}:mu"
        }
    }

10. Numeric Parameters

  • Mesh size :

    • Interior of torus : \(0.01 m\)

    • Far from the torus : \(0.2 m\)

  • Element Type : I run the simulation in \(P_2\) elements.

1torus axis mesh
Mesh of Geometry