Test case of Transient Heat Equation in Axisymmetric
1. Introduction
This page presents the simulation of temperature on geometry of torus in transient case and axisymmetrical case with electric source term computed with CFPDEs application.
The electric source term isn’t the real physics source term because it varies over time. |
2. Run the calculation
The command line to run this case is :
mpirun -np 16 feelpp_toolbox_coefficientformpdes --config-file=heat.cfg --cfpdes.gmsh.hsize=1e-4
3. Data Files
The case data files are available in Github here :
-
CFG file - Edit the file
-
JSON file - Edit the file
-
GEO file - Edit the file
4. Equation
We solve the Heat Equation in Axisymmetrical coordinates (Heat Axis).
With :
* \(T\) : temperature \((K)\) |
* \(Q\) : source term \((K)\) |
* \(\rho\) : density \((kg/m^3)\) |
* \(h\) : convection coefficient \((W \, m^{-2} / K)\) |
* \(C_p\) : thermal capacity \((J/K/kg)\) |
* \(T_c\) : cooling temperature \((K)\) |
And \(\Delta T = \frac{1}{r} \frac{\partial \left( r T \right)}{\partial r} + \frac{\partial T}{\partial z}\)
5. Geometry
The geometry is a torus in cartesian coordinates \((x,y,z)\) or rectangle in axisymmetric coordinates \((r,z)\).
Geometry in Axisymmetrical cut
|
Geometry in three dimensions
|
The geometrical domains are :
-
Conductor
: the torus, it is composed by the conductive material -
Interior
andExterior
: interior and exterior of ring (or right and left of rectangle in axisymmetric coordinates \((r,z)\)) correspond to \(\Gamma_R\) -
Bottom
andUpper
: up and bottom of the ring (or up and bottom of the rectangle in axisymmetric coordinates \((r,z)\)) correspond to \(\Gamma_N\)
Symbol |
Description |
value |
unit |
\(r_{int}\) |
interior radius of torus |
\(75e-3\) |
m |
\(r_{est}\) |
exterior radius of torus |
\(100.2e-3\) |
m |
\(z_1\) |
half-height of torus |
\(25e-3\) |
m |
6. Initial/Boundary Conditions
We impose the boundary conditions :
-
Neumann : \(\frac{\partial T}{\partial \mathbf{n}} = 0\) on
Interior
andExterior
-
Robin : \(-k \, \frac{\partial T}{\partial \mathbf{n}} = h \, \left( T - T_c \right)\) on
Upper
andBottom
We initialize on Conductor
, \(T(t=0,r,z) = T_i\)
On JSON file, the boundary conditions are writed :
"BoundaryConditions": { "heat": { "Robin": { "Interior": { "expr1":"h*x:h:x", "expr2":"h*T_c*x:h:T_c:x" }, "Exterior": { "expr1":"h*x:h:x", "expr2":"h*T_c*x:h:T_c:x" } } } }
On JSON file, the initial conditions are writed :
"InitialConditions": { "temperature": { "Expression": { "myic": { "markers":"Conductor", "expr":"T_i:T_i" } } } }
7. Weak Formulation
We obtain :
With \(\tilde{\nabla} = \pmatrix{ \frac{\partial}{\partial r} \\ \frac{\partial}{\partial z} }\)
8. Parameters
The parameters of problem are :
-
On
Conductor
:
Symbol |
Description |
Value |
Unit |
\(Q\) |
source term |
\(\sigma \, \left( \frac{U}{2\pi \, r} \right)\) |
J |
\(U\) |
electrical potential |
\(1\) |
\(Volt\) |
\(\sigma\) |
electrical conductivity |
\(58e6\) |
\(S/m\) |
\(k\) |
thermal conductivity |
\(380\) |
\(W/m/K\) |
\(C_p\) |
thermal capacity |
\(380\) |
\(J/K/kg\) |
\(\rho\) |
density |
\(10000\) |
\(kg/m^3\) |
\(h\) |
convective coefficient |
\(80000\) |
\(W/m^2/K\) |
\(T_c\) |
cooling temperature |
\(293\) |
\(K\) |
\(T_i\) |
initial temperature |
\(293\) |
\(K\) |
On JSON file, the parmeters are writed :
"Parameters": { "h":80000, // W/m2/K "T_c":293, // K "T_i":293, // K "U":1, // V // Constants of analytical solve "a":1933.10, // K "b":0.40041, // K "rmax":0.0861910719118454, // m "Tmax":364.446 // K }
9. Coefficient Form PDEs
We use the application Coefficient Form PDEs. The coefficient associate to Weak Formulation are :
-
On
Conductor
:
Coefficient |
Description |
Expression |
\(d\) |
damping or mass coefficient |
\(\rho \, C_p\) |
\(c\) |
diffusion coefficient |
\(k\) |
\(f\) |
source term |
\(\sigma \left( \frac{U}{2\pi \, r} \right)^2\) |
On JSON file, the coeficients are writed :
"Materials": { "Conductor": { "k":380, // W/m/K "sigma":58e+6, // S.m-1 "rho":10000, // kg/m3 "Cp":380, // J/K/kg "heat_c":"k*x:k:x", "heat_f":"sigma*(U/2/pi)*(U/2/pi)/x:sigma:U:x", "heat_d":"rho*Cp*x:rho:Cp:x" } }
10. Numeric Parameters
-
Size of mesh : \(0.1 \,mm\)
-
Time Parameters :
-
Time step : \(0.5 \, s\)
-
Initial Time : \(0 \, s\)
-
Final Time : \(15 \, s\)
-
-
Element type : \(P1\)
-
Solver : automatic
-
Number of CPU core : \(16\)
Mesh of Geometry
|
11. Results
We obtain :
Temperature \(T(K)\)
|
I plot the maximal temperature \(T_{max}\) across time :
The maximum temperature increase in time and stabilized around \(T_{max}=364 \, K\).
I plot the temperature at \(t=15s\), at this time, we consider the system stationary.
The temperature is constant by \(z\). We can see with the cut, the temperature have a profil of bell. The temperature is less at the cooled interior and exterior than the middle of torus.
12. Validation
We do a convergence test with L2-error between the numeric result of stationnary problem and stationnary analytical result with different size of mesh.
12.1. Exact solution
The computation are on page Test case of Stationary Heat Equation in Axisymetric.
We have :
With \(T_{max} = T(r_{max})\) the maximal temperature and \(r_{max}\) its input.
And :
12.2. Convergence Test
I compute the L2-error between the numeric result at final time \(t=t_f\) and exact solution of static problem (\(||T_{num}(t=t_f)-T_{exact}(t=t_f)||_{L^2(\Omega)}\)) for different mesh sizes and a constant time step \(\Delta_t=0.1s\).
|
Our implementation of transient heat equation in axisymmetrical coordinates converges.