Test Case of Maxwell Quasi Static with Regularized Formulation on Two Torus

1. Introduction

This is the test case of Maxwell Quasi Static Problem with the A-V Formulation and Gauge Condition on a two torus geometry surrounded by air.

2. Run the Calculation

The command line to run this case is :

    feelpp_toolbox_coefficientformpdes --config-file=mqs_reg.cfg --cfpdes.gmsh.hsize=5e-3

This case is run with the latest version 109 of Feelpp.

3. Data Files

The case data files are available in Github here :

4. Equation

The domain \(\Omega\) is composed of the conductor \(\Omega_c\) and non conducting materials \(\Omega/\Omega_c\) where \(\mathbf{J} = 0\), like the air for example. \(\Gamma = \partial \Omega\) is the bound of \(\Omega\), decomposed in \(\Gamma_D\) with Dirichlet boundary condition and \(\Gamma_N\) with Neumann boundary condition, such that \(\Gamma = \Gamma_D \cup \Gamma_N\).

We introduce :

  • Magnetic potential field \(\mathbf{A}\) : the magnetic field is \(\textbf{B} = \nabla \times \textbf{A}\)

  • Electric potential scalar : \(\nabla V = - \textbf{E}\)

We want to resolve the electromagnetic problem ( with \(\mathbf{A}\), \(p\) and \(V\) as the unknowns) :

A-V Regularized Formulation
\[\text{(AV)} \left\{ \begin{matrix} \sigma \frac{\partial \textbf{A}}{\partial t} + \nabla \times \left( \frac{1}{\mu} \nabla \times \textbf{A} \right) + \epsilon\textbf{A} + \sigma \nabla V &=& 0 &\text{ on } \Omega & \text{(AV-1)} \\ \nabla \cdot \left( \sigma \nabla V + \sigma \frac{\partial \textbf{A}}{\partial t} \right) &=& 0 &\text{ on } \Omega_c & \text{(AV-2)} \end{matrix} \right.\]

With :

  • \(\sigma\) : electric conductivity \(S/m\)

  • \(\mu\) : electric permeability \(kg/A^2/S^2\)

5. Geometry

The geometry is a quarter of two conducting torus, surrounded by air.

2torus 3d
Geometry
2torus 3d(1)
Geometry loop on Conductors

The geometrical domains are :

  • Conductor_0 : the first torus, it is composed of conductive materials

    • V0_0 : entrance of electrical potential

    • V1_0 : exit of electrical potential

  • Conductor_1 : the second torus, it is composed of conductive materials

    • V0_1 : entrance of electrical potential

    • V1_1 : exit of electrical potential

  • Air (\(\Omega/\Omega_c\)) : the air surrounding Conductor

    • OXOZ : \(OxOz\) plan

    • OYOZ : \(OyOz\) plan

    • Infty : the rest of Air 's bound

Symbol

Description

value

unit

\(r_{int}\)

interior radius of torus

\(75e-3\)

m

\(r_{ext}\)

exterior radius of torus

\(100.2e-3\)

m

\(z_1\)

half-height of torus

\(25e-3\)

m

\(r_{infty}\)

radius of infty border

\(5*r_{ext}\)

m

6. Boundary Conditions

The Dirichlet boundary conditions imposed are :

  • For \(V\) equation :

    • On V0_0 and V0_1 : \(V=0\)

    • On V1_0 : \(V = \begin{cases}\frac{1}{4}\frac{t}{0.1}&\quad\text{if }t<0.1\\ \frac{1}{4}&\quad\text{if }0.1<t<0.5\\ 0&\quad\text{if }t>0.5\end{cases} \)

    • On V1_1 : \(V = \begin{cases}\frac{1}{4}\frac{t}{0.1}&\quad\text{if }t<0.1\\ \frac{1}{4}&\quad\text{if }0.1<t<0.7\\ 0&\quad\text{if }t>0.7\end{cases} \)

  • For \(\mathbf{A}\) :

    • On OXOZ, V0_0 and V0_1 : \(A_x = A_z = 0\), we want \(\mathbf{A}\) orthogonal to OXOZ and V0

    • On OYOZ, V1_0 and V1_1 : \(A_y = A_z = 0\), we want \(\mathbf{A}\) orthogonal to OYOZ and V1

    • Infty : We approximate the problem, Infty is the physical infty so \(\mathbf{B}=0\) at Infty thus \(\mathbf{A} = 0\)

  • For \(p\) :

    • On OXOZ, V0_0 and V0_1 : \(p = 0\)

    • On OYOZ, V1_0 and V1_1 : \(p = 0\)

    • Infty : \(p = 0\)

On JSON file, the boundary conditions are written :

Boundary conditions on JSON file
    "BoundaryConditions":
    {
        "magnetic":
        {
            "Dirichlet":
            {
                "boundary":
                {
                    "markers":["Infty"],
                    "expr":"{0,0,0}"
                },
                "mydir_x":
                {
                    "markers":["V0_0","V0_1","OXOZ"],
                    "expr":"{0,0,0}"
                },

                "mydir_y":
                {
                    "markers":["V1_0","V1_1","OYOZ"],
                    "expr":"{0,0,0}"
                },
                "mydir_z":
                {
                    "markers":["V0_0","V0_1","OXOZ","V1_0","V1_1","OYOZ"],
                    "expr":"{0,0,0}"
                }
            }
        },
        "electric":
        {
            "Dirichlet":
            {
                "V0_0":
                {
                    "expr":"materials_Conductor_0_V0:materials_Conductor_0_V0"
                },
                "V0_1":
                {
                    "expr":"materials_Conductor_1_V0:materials_Conductor_1_V0"
                },
                "V1_0":
                {
                    "expr":"materials_Conductor_0_V1:materials_Conductor_0_V1"
                },
                "V1_1":
                {
                    "expr":"materials_Conductor_1_V1:materials_Conductor_1_V1"
                }
            }
        }
    },

7. Weak Formulation

Weak Formulation
\[\scriptsize{ \text{(Weak AV)} \\ \left\{ \begin{eqnarray*} \int_{\Omega}{ \sigma \frac{\partial \textbf{A}}{\partial t} \cdot \phi \ dxdydz} + \int_{\Omega}{ \frac{1}{\mu} \nabla \times \textbf{A} \cdot \nabla \times \phi \ dxdydz } - \int_{\Omega}{ \epsilon\textbf{A} \cdot \phi \ dxdydz } &=& - \int_{\Omega_c}{ \sigma \nabla V \cdot\phi \ dxdydz } \quad\text{(Weak AV1)} \\ \int_{\Omega_c}{\sigma (\nabla V + \frac{\partial \mathbf{A}}{\partial t}) \cdot \nabla \mathbf{\psi}} &=& 0 \quad\text{(Weak AV-2)}\\ &&\forall \mathbf{\phi} \in H^{curl}(\Omega) \text{ and } \forall \mathbf{\psi} \in H^{1}(\Omega_c) \end{eqnarray*} \right. }\]

8. Parameters

The parameters of the problem are :

  • On Conductor_0 :

Symbol

Description

Value

Unit

\(V0\)

scalar electrical potential on V0

\(0\)

\(Volt\)

\(V1\)

scalar electrical potential on V1

\(\begin{cases}\frac{1}{4}\frac{t}{0.1}&\quad\text{if }t<0.1\\ \frac{1}{4}&\quad\text{if }0.1<t<0.5\\ 0&\quad\text{if }t>0.5\end{cases}\)

\(Volt\)

\(\sigma\)

electrical conductivity

\(58e6\)

\(S/m\)

\(\mu=\mu_0\)

magnetic permeability of vacuum

\(4\pi.10^{-7}\)

\(kg \, m / A^2 / S^2\)

  • On Conductor_1 :

Symbol

Description

Value

Unit

\(V0\)

scalar electrical potential on V0

\(0\)

\(Volt\)

\(V1\)

scalar electrical potential on V1

\(\begin{cases}\frac{1}{4}\frac{t}{0.1}&\quad\text{if }t<0.1\\ \frac{1}{4}&\quad\text{if }0.1<t<0.7\\ 0&\quad\text{if }t>0.7\end{cases}\)

\(Volt\)

\(\sigma\)

electrical conductivity

\(58e6\)

\(S/m\)

\(\mu=\mu_0\)

magnetic permeability of vacuum

\(4\pi.10^{-7}\)

\(kg \, m / A^2 / S^2\)

  • On Air :

Symbol

Description

Value

Unit

\(\mu=\mu_0\)

magnetic permeability of vacuum

\(4\pi.10^{-7}\)

\(kg \, m / A^2 / S^2\)

On JSON file, the parameters are written :

Parameters on JSON file
    "Parameters":
    {
        "sigma":58e6,
        "mu":"4*pi*1e-7"
    },
    "Materials":
    {
        "Conductor_0":
        {
            "V0":0,
            "V1":"1/4*(t/0.1*(t<0.1)+(t<0.5)*(t>0.1)):t",
            //[...]
        },
        "Conductor_1":
        {
            "V0":0,
            "V1":"1/4*(t/0.1*(t<0.1)+(t<0.7)*(t>0.1)):t",
            //[...]
        },
        "Air":
        {
            //[...]
        }
    },

9. Coefficient Form PDEs

The Feelpp toolboxe Coefficient Form PDEs is used here /*insert ref */. The coefficients associated to the Weak Formulation are :

  • On Conductor_0 and Conductor_1 :

Coefficient

Description

Expression

magnetic_d

damping or mass coefficient

\(\sigma\)

magnetic_zeta

…​. coefficient

\(\frac{1}{\mu}\)

magnetic_f

source term

\(- \sigma \nabla V \)

magnetic_a

absorption or reaction coefficient

\(\epsilon\)

electric_c

damping or mass coefficient

\(\sigma\)

electric_gamma

source term

\(\sigma \, \frac{d \mathbf{A}}{d t}\)

  • On Air :

Coefficient

Description

Expression

magnetic_zeta

…​ coefficient

\(\frac{1}{\mu}\)

magnetic_a

absorption or reaction coefficient

\(\epsilon\)

constraint_gamma

conservative flux source term

\(\mathbf{A}\)

On JSON file, the coefficients are written :

CFPDEs coefficients on JSON file
    "Materials":
    {
        "Conductor_0":
        {
            "V0":0,
            "V1":"1/4*(t/0.1*(t<0.1)+(t<0.5)*(t>0.1)):t",

            "magnetic_d":"sigma:sigma",
            "magnetic_zeta":"1/mu:mu",
            "magnetic_f":"{-sigma*electric_grad_V_0,-sigma*electric_grad_V_1,-sigma*electric_grad_V_2}:sigma:electric_grad_V_0:electric_grad_V_1:electric_grad_V_2",
            "magnetic_a":"epsilon:epsilon",

            "electric_c":"sigma:sigma",
            "electric_gamma":"{sigma*magnetic_dA_dt_0,sigma*magnetic_dA_dt_1,sigma*magnetic_dA_dt_2}:sigma:magnetic_dA_dt_0:magnetic_dA_dt_1:magnetic_dA_dt_2"
        },
        "Conductor_1":
        {
            "V0":0,
            "V1":"1/4*(t/0.1*(t<0.1)+(t<0.7)*(t>0.1)):t",

            "magnetic_d":"sigma:sigma",
            "magnetic_zeta":"1/mu:mu",
            "magnetic_f":"{-sigma*electric_grad_V_0,-sigma*electric_grad_V_1,-sigma*electric_grad_V_2}:sigma:electric_grad_V_0:electric_grad_V_1:electric_grad_V_2",
            "magnetic_a":"epsilon:epsilon",

            "electric_c":"sigma:sigma",
            "electric_gamma":"{sigma*magnetic_dA_dt_0,sigma*magnetic_dA_dt_1,sigma*magnetic_dA_dt_2}:sigma:magnetic_dA_dt_0:magnetic_dA_dt_1:magnetic_dA_dt_2"
        },
        "Air":
        {
            "physics":"magnetic",

            "magnetic_zeta":"1/mu:mu",
            "magnetic_a":"epsilon:epsilon"
        }
    },

10. Numeric Parameters

This section show the parameters used to compute the simulation.

  • Size of mesh :

    • On Conductor : \(0.5 \, mm\)

    • On Infty : \(100 \, mm\)

  • Time Parameters :

    • Time step : \(0.01 \, s\)

    • Initial Time : \(0 \, s\)

    • Final Time : \(1 \, s\)

  • Element type : \(P1\)

  • Solver : automatic

  • Number of CPU core : \(32\)

2torus 3d mesh
Mesh of Geometry

11. Results

11.1. Magnetic Potential Field

The magnetic potential field \(\mathbf{A}\) :

Magnetic potential field \(A (T.m)\)

11.2. Magnetic Field

The magnetic field \(\mathbf{B}\) is defined by :

\[ \mathbf{B} = \nabla \times \mathbf{A}\]
\(x\) component of Magnetic field \(B_x (T)\)
\(y\) component of Magnetic field \(B_y (T)\)
\(z\) component of Magnetic field \(B_z (T)\)

12. References

  • Cecile Daversin - Catty. Reduced basis method applied to large non-linear multi-physics problems: application to high field magnets design. Electromagnetism. Université de Strasbourg, 2016. p56-64 PDF