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Abstract

Due to the rate at which the COVID-19 pandemic is spreading, a model
for indoors airborne transmission that is quick to implement is required.
We create such a model assuming that the concentration of airborne in-
fectious particles is governed by an advection–diffusion–reaction equation.
As schools and universities are intensively discussing how to operate their
indoor spaces, we solve the model for an average-sized classroom, assum-
ing only one infectious person at the centre of the room, and quantify
the effect of several ventilation settings when the person is breathing or
talking, both with and without a face mask. We compare our model both
with more complex models and with experimental data, where available,
and find good agreement. The framework can be easily applied to any
other high-risk location, such as hospitals.

We also generate maps of the Time To Infection (TTI) by airborne
transmission in the classroom, for various activities and ventilation lev-
els. We then use the TTI maps to quantify the airborne transmission
risk at a given time and make recommendations for the Safe Occupancy
Time (SOT), for a chosen risk tolerance level. As expected, we find that
the SOT decreases as the ventilation quality decreases. We also estab-
lish the recommended “vacancy time” after an activity in the room. For
example, to achieve an airborne transmission risk of less than 5%, a class-
room with the pre-pandemic ASHRAE recommended ventilation would
allow 37-minute lessons followed by 35-minute breaks but if the ventila-
tion is poor, 25-minute lessons should be followed by 166-minute breaks.
If ventilation meets the ASHRAE pandemic-updated recommendation,
52-minute lessons and 11-minute breaks are allowed. Our model also
uncovers power-law relationships for the concentration in the room as a
function of time and particle emission rate and for the TTI as a function
of ventilation rate and particle emission rate, which may be used as a fast
tool to predict the SOT in a multitude of realistic scenarios. Finally, we
show that wearing a face mask of 50% efficiency could increase the SOT
by 98% and reduce the vacancy time by up to 55%, depending on the
ventilation setting.
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1 Introduction

The COVID-19 pandemic started in December 2019 in Wuhan, China. The
SARS-CoV-2 virus quickly spread across the globe causing devastation, with
more than sixty million confirmed cases worldwide and almost 1.5 million
deaths [1]. COVID-19 is transmitted through virus-carrying respiratory droplets,
which are released when an infected person coughs, sneezes, talks or even
breathes [2, 3]. Evidence has accumulated that also smaller respiratory droplets
which become airborne aerosols can transmit the disease [4]. In July 2020, 239
scientists signed an open letter appealing for the recognition of airborne trans-
mission [5], and in October 2020 the US Centre for Disease Prevention and
Control acknowledged airborne transmission and updated their guidelines [6].

Models studying the risk of airborne transmission generally fall into one of
two types: those built on the well-mixed room (WMR) assumption and Compu-
tational Fluid Dynamics (CFD) models. The WMR assumption is that virus-
carrying aerosols are instantaneously evenly distributed throughout the room
[7, 8], so everyone in the room is equally likely to be infected, regardless of their
position. This assumption greatly simplifies the problem by ignoring the com-
plex effects of the air flow on the airborne particles, so the models can be built
in spreadsheets and are quick to run [9]. Models built on the WMR assumption
were quickly applied to COVID-19 [10, 11, 12].

Various CFD simulations have also investigated the transport of viral COVID-
19 aerosols [13, 14, 15, 16, 17, 18]. Some of these studies focus on the transport
in the short term (less than 5 minutes) [13, 14, 15], while others show the build-
up of aerosols indoors over an hour [17, 18]. CFD simulations are useful in
studying airborne transmission as they can take into account the details of the
room size, geometry, the complex turbulent airflow and the size distribution of
the aerosols, such as in [14].

However, both WMR and CFD models have drawbacks. The WMR models
are too simplistic – they ignore the effects of the room geometry and of the
turbulent air flow. On the other end of complexity spectrum, CFD models take
a long time to run even for small-sized locations, so they cannot easily be applied
to a new location and are not suited for ‘dynamic simulations’. Therefore,
in this paper we develop a model based on the advection–diffusion–reaction
equation which falls in between, in terms of complexity and user-friendliness.
This model provides quick simulations while still taking into account the effect
of the turbulent airflow. Even though our model is less detailed than CFD
models, we shall show that it is able to reproduce the results of more complex
simulations while being able to run quickly on a PC, without the need of a
supercomputer. Furthermore, we show how our simple model uncovers power-
law relationships for the concentration in the room, which may be used as a
fast tool to predict safe occupancy times. The computational simplicity of our
model is an asset during the urgent times of this current pandemic, and enables
easy application to different locations such as classrooms, healthcare clinics and
supermarkets.

In Section 2, we present our model for the movement and accumulation of
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the airborne particles indoors, produced by a single presymptomatic or asymp-
tomatic spreader of COVID-19 who is breathing or talking. We assume that the
advection–diffusion–reaction equation governs the concentration of the virus. As
many countries are currently debating the best way to operate their spaces so
as to minimise infection rates during the ongoing second wave of the pandemic,
we consider an average classroom. In Section 3.1 we determine the viral con-
centration in the classroom, for four different ventilation scenarios: very poor
ventilation, poor ventilation, a pre-pandemic recommended ventilation and a
pandemic-updated recommended ventilation. Then, in Section 3.2 using avail-
able estimates of the infectious dose of COVID-19 [14] and a formula for the
number of infectious particles inhaled [19], we estimate Time To Infection (TTI)
by airborne transmission for a susceptible person. This allows us to determine
a safe Safe Occupancy Time (SOT), given a specified tolerance for the airborne
transmission risk and a recommended “vacancy time”. We also quantify the
reduction in the airborne transmission risk when the infected person wears a
mask. We uncover power-law relationships in locations and times where the
walls of the room do not play a role in the viral concentration. Such power laws
allow for even simpler model predictions that may be implemented in different
locations. We summarise our work and draw conclusions on how one could use
the model for future planning to tackle the pandemic in Section 4

2 Methodology

2.1 Governing equation and model assumptions

We study the airborne transmission of COVID-19 in an indoor space by creating
a 2D model to study the concentration of airborne infectious particles in a
rectangular domain, produced by a breathing or talking infectious person who
is presymptomatic or asymptomatic, with and without a face mask.

We assume that the droplets due to breathing and talking are released from
the infected person with zero initial velocity. These droplets are then trans-
ported via advection due to the airflow in the room and diffusion due to tur-
bulent mixing. We suppose that the advection velocity of the air, ~v (m/s), is
solely controlled by the air-conditioning unit. We assume that the recirculation
of air leads to turbulent mixing of the infectious particles, which occurs much
more rapidly than molecular diffusion due to Brownian motion [20]. Turbu-
lent diffusion is governed by the isotropic eddy diffusion coefficient, K (m2/s),
which describes how quickly particles diffuse with time due to turbulent mixing
indoors [20].

From these assumptions, we arrive at the governing equation for the airborne
transmission of COVID-19 – the advection–reaction–diffusion equation –

∂C

∂t
= ∇ · (K∇C)−∇ · (~vC) + S, (1)

where C is the concentration of airborne infectious particles (particles/m2), ∇
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is the two-dimensional gradient operator, t is the time (s) and S is the sum of
sources and sinks of viral particles [21].

As the maximum velocity |~v| considered is 0.15m/s which is small compared
to the speed of sound (340 m/s) (see Table 1 for typical values), we can assume
that the air is an incompressible fluid [22]. Hence, the corresponding mass-
conservation equation is

∇ · ~v = 0. (2)

Following [23], we model the infected person who is breathing or talking as a
continuous point source emitting viral particles at a constant rate of R par-
ticles/s. Thus, an infectious person talking or breathing at position (x0,y0)
starting at time t = t0 is modelled as follows:

Sinf = Rδ(x− x0)δ(y − y0)H(t− t0), (3)

where δ(x) is the Kronecker delta function and H(t) is the Heaviside step func-
tion.

As R is still unknown we make the assumption that every airborne respira-
tory particle produced contains the virus. In other words, the emission rate of
airborne virus-carrying particles, R, is the same as the average emission rate of
airborne respiratory particles. We also assume that inhaling and exhaling occur
at the same rate, so there is no net source or sink of air from the emitter and
receiver of the particles.

We assume there is mechanical ventilation in this indoor space provided by
air vents Following [24], we model the ventilation effect as a sink term of uniform
strength over the domain,

Svent = −λC, (4)

where λ is the air exchange rate of the room, measured in s−1. This is an
approximation since removal of the air by ventilation occurs at a higher rate
near the air vents [25] but our approach still allows us to include the effect of
ventilation while retaining its key features and without greatly increasing the
mathematical complexity of our model.

Assuming there is only one infectious person, we substitute equations (2),
(3) and (4) into the advection–diffusion–reaction equation (1) and obtain the
partial differential equation (PDE) we will work with:

∂C

∂t
+ ~v · (∇C)−K∇2C = Rδ(x− x0)δ(y − y0)H(t− t0)− λC. (5)

For will further assume that the airflow from the air-conditioning unit is constant
and uniform. Therefore, ~v = (v, 0), with v constant. The second wave of the
pandemic is currently hitting several countries who were debating whether it is
safe to keep schools and universities open for face-to-face teaching and optimal
methods of operation. Hence, we decided to simulate an average classroom of
dimensions 8m (l) × 8m (w) × 3m (h) – see Figure 1.
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Figure 1: Schematic of the modelled room. One infectious person (viral source)
is located at the centre of the room. Positions A and B are of particular interest
and are studied in our analysis.

We consider four physically relevant ventilation settings which correspond
to four different values of λ, the air exchange rate, as follows:

1. Very poor ventilation.

2. Poor ventilation.

3. A pre-pandemic recommended ventilation setting.

4. A pandemic-updated recommended ventilation setting.

For the very poor-ventilation scenario (scenario 1), we take as λ the mean value
determined for a closed classroom (closed windows, fans off) with the air condi-
tioning off in a primary school study by [26]. The study investigated the impact
of air exchange rates on the indoor pollution particle number concentration
and showed that in practice classrooms may have far lower air exchange rates
than those recommended. For the poor-ventilation scenario, we take as λ the
mean value determined for a closed classroom but now with the air condition-
ing on [26]. For scenarios 3 and 4, we consider the recommended air exchange
rate for classrooms made by the American Society of Heating, Refrigeration
and Air-Conditioning Engineers (ASHRAE) before the pandemic [27] and the
recommendation they issued for the pandemic [28], respectively.

To determine an approximate value for K, the eddy diffusion coefficient,
we use the following formula, which is valid for an isothermal room served by
mixing ventilation. This was developed by [29] and is based on the turbulent
kinetic energy balance (TKEB) relationship initially proposed by [30]:

K = cvQ(2cεV N
2)−1/3. (6)
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Here, cv is the von Karman constant, Q is the total volume flow rate into the
room, V is the volume of the room, N is the number of air supply vents, and
cε is the constant of proportionality in Taylor’s Dissipation Law [30, 31]. Since
Q = V λ, (6) may be rewritten as

K = cvV λ(2cεV N
2)−1/3. (7)

We assume the relationship cε = c3v following [30, 32]. Taking a value cv = 0.39
[33] gives cε = 0.059. We note, however, that there is some uncertainty about
the value of cε. Some applications of the TKEB in the literature have used
other formulae for cε, e.g. cε = cv [24] and cε = 0.5c3v [29], without providing a
rationale.

We will also quantify the reduction in the airborne transmission risk when
the infectious person wears a face mask. The efficiency of surgical masks and
N95 respirators is well documented [34]. However, due to the sudden demand
produced by the COVID-19 pandemic, there has been a shortage of such masks
and many people have had to make do with cloth masks. The efficiency of
these masks is not well studied: at the moment there is only a preliminary
study by [35], which suggests that the efficiency is at least 50%. Furthermore, a
fraction of the general public wear their masks incorrectly, which reduces their
efficiency. Thus, we shall assume that a mask has an efficiency of 50% (the
worst-case scenario). All parameters and their values are found in Table 1.

2.2 Initial and Boundary Conditions

We assume that the initial concentration of infectious aerosols in the room is
zero, and that the infected person (the source of infectious particles) is located
at the centre of the room. The room walls are modelled as reflecting boundaries,
so that no virus particles escape through the walls. The appropriate boundary
conditions are then

K
∂C

∂x
(0, y, t)− vxC(0, y, t) = 0 (8a)

K
∂C

∂x
(l, y, t)− vxC(l, y, t) = 0 (8b)

K
∂C

∂y
(x, 0, t)− vyC(x, 0, t) = 0 (8c)

K
∂C

∂y
(x,w, t)− vyC(x,w, t) = 0 (8d)

2.3 Solving the advection–diffusion–reaction equation

We solve the PDE (5) with the boundary conditions (8) by first solving the
homogeneous problem to determine the impulse function. Then, we convolve
the impulse with the source function (3) to obtain the full solution [38]. A
solution to the homogeneous problem of the form Ĉ = Ae−λt is assumed, for
some constant A [38]. We then use the change of variable ξ = x − vt and
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Parameter Symbol Value Source
Rate of
production of
infectious
particles

R Breathing: 0.5 particle/s [36]
Talking: 5 particles/s [36]
Breathing with mask: 0.25 parti-
cles/s

[35]

Talking with mask: 2.5 particles/s [35]
Airflow speed v 0.15 m/s [37]
Length of room l 8m
Width of room w 8m
Height of room h 3m
Room air
exchange rate

λ Very poor ventilation: 0.12 h−1 ≈
3.3× 10−5 s−1

[26]

Poor ventilation: 0.72 h−1 ≈ 2 ×
10−4 s−1

[26]

Pre-pandemic recommended ventila-
tion: 3 h−1 ≈ 8.3× 10−4 s−1

[27]

Pandemic-updated recommended
ventilation: 6 h−1 ≈ 1.7× 10−3 s−1

[28]

von Karman
constant

cv 0.39 [33]

Turbulence
dissipation
constant

cε 0.059 [30, 32]

Eddy diffusion
coefficient

K Very poor ventilation: 8.8 ×10−4

m2/s
[29]

Poor ventilation: 5.3 ×10−3 m2/s [29]
Pre-pandemic recommended ventila-
tion: 2.2 ×10−2 m2/s

[29]

Pandemic-updated recommended
ventilation: 4.4 ×10−2 m2/s

[29]

Table 1: Parameter values
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separation of variables to reduce to two one-dimensional diffusion problems [38].
Due to the reflecting boundaries, we can use the method of images [25, 39] when
solving for the impulse function. Hence, the solution is given by

C(x, y, t) =

∫ t

0

R

4πK

∞∑
m=−∞

(
e−

(x−vx(t−τ)−x0−2ml)2

4K(t−τ) + e−
(x+vx(t−τ)+x0−2ml)2

4K(t−τ)

)
×

∞∑
n=−∞

(
e−

(y−vy(t−τ)−y0−2nb)2

4K(t−τ) + e−
(y+vy(t−τ)+y0−2nb)2

4K(t−τ)

)
e−λ(t−τ)

t− τ
dτ.

(9)

We note that C is proportional to the strength of the source, R, as expected.
Henceforth, we will use the dimensionless parameter R = R/R0, where R0 is
the rate of production of infectious particles when breathing (which is equal
to 0.5 particles/s–see Table 1). We choose to work with R in all subsequent
analysis (see Table 2).

Infectious person state R (particles/s) R = R/R0

Breathing 0.5 1
Talking 5 10

Breathing with mask 0.25 0.5
Talking with mask 2.5 5

Table 2: The rate of production of infectious particles and the corresponding
non-dimensional rate when breathing or talking with and without mask, scaled
by the production rate during breathing, R0 = 0.5 particles/s.

2.4 Calculating the Time To Infection (TTI) due to air-
borne transmission

We use the following equation to calculate the number of infectious particles
inhaled, adapted from [14] and [19],

P (x, y, t) =

∫ t

0

ρC(x, y, τ)dτ, (10)

where P is the number of infectious particles inhaled and ρ is the breathing
rate, that is, the amount of air inhaled by a person per second, on average.

Since we are modeling exhalation as a continuous process, we also model
inhalation as a continuous process. The average person inhales 16 times per
minute with an air intake volume of approximately 0.5L [40]. Hence, the breath-
ing rate, ρ is approximately 1.3× 10−4 m3/s [40].

As we are working in two dimensions, we divide this breathing rate by the
height of the turbulent clouds produced by breathing, hc [41, 42]. The height of
these clouds increases with distance travelled, but a cloud produced by coughing
that is at 1m away has a height of about 0.2m [41]. [42] notes that the cross-
sectional areas of turbulent jets produced by talking that are at distances greater
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than 0.5m ‘envelop the size of a person’s head’, and at a distance of 1.6m a non-
negligible concentration contour in the cloud is ‘comparable to the scale of the
head’. Based on these observations, we assume the effective hc to be the height
of a person’s head, which we assume to be 0.2m. This gives ρ2D = ρ/hc =
6.7× 10−4 m2/s.

To calculate the TTI from (10), we require the infectious dose of COVID-
19 particles, PI , which is the critical number of airborne particles required to
be inhaled for infection to occur. [14] suggests that PI for airborne COVID-
19 transmission is 100 inhaled particles over three hours, when assuming that
the viral load is constant. This estimate is consistent with the infectious dose
for SARS-CoV-1 that was estimated to be around 280 particles overnight [43],
while [44] compiled a list of the infectious dose of several biological warfare
agents which show that bacteria and virus aerosols can cause disease with as
few as 1–100 aerosols in two hours. Therefore, this estimate for SARS-CoV-2
of 100 particles is reasonable, keeping in mind that it may have to be updated
in the future. This can be easily done in our modelling framework since PI is
only used in (10) as a threshold figure used for comparison, and nowhere else in
our model. Thus, the TTI, tc, satisfies the following equation:∫ tc

0

ρ2DC(x, y, t)dt = PI ,

which we can rearrange to∫ tc

0

C(x, y, t)dt =
PI
ρ2D

= 1.5× 105 particles m−2s. (11)

Parameter Symbol Value Source
3D breathing rate ρ 1.3× 10−4 m3/s [40]
Height of turbulent respiratory cloud hc 0.2m [42]
2D breathing rate ρ2D 6.7× 10−4 m2/s [40, 42]
Infectious dose PI 100 particles [14]

Table 3: Parameter values used in (11) to determine the TTI.

2.5 Computations and code: low computational cost

We implement the solution (9) in Python 3.8.5 64-bit. The convolutions are
performed using the convolve function from the scipy.signal subpackage, which
convolves two N -dimensional arrays [45]. To achieve satisfactory accuracy, we
used a time step of 0.3s. The infinite series in (9) is evaluated for −102 ≤ n ≤
102. We choose these values of n because we evaluated the solution for time up
to three hours, and during three hours a particle traveling at 0.15m/s reflects
off each wall of the room 3× 3600× 0.15/(2× 8) = 102 times.

To determine the TTI, we apply the cumtrapz function from the
scipy.integrate subpackage, which cumulatively integrates an array of values
using the trapezoidal rule [45], to the results of the convolutions. The TTI

9



plots are produced using the Matplotlib library [46]. The TTI contour plots are
produced using a rectangular, fine mesh of size 0.05m. The computation time
required was approximately four hours for each scenario but it can be reduced
using a coarser mesh. We run the simulations on a 2012 MacBook Pro laptop,
with a 2.5GHz Dual Core Intel Core i5-3210M processor and 4GB 1805MHz
RAM. Our code is available at:
https://github.com/zechlau14/Modelling-Airborne-Transmission.

3 Results and discussion

3.1 The concentration of airborne infectious particles

Figure 2 shows the concentration of the infectious particles in the room after one
hour. In every ventilation scenario, the highest concentration is in the region
directly downwind from the infectious person. The width of this region increases
with the amount of ventilation, as it depends on the eddy diffusion coefficient,
K, which in turn is proportional to the air exchange rate, λ. The next highest
concentration in the room is found upwind, then the concentration decreases as
one travels away from the infectious person in the direction orthogonal to the
air flow. Our results agree with the results of air sampling in hospital wards
in Wuhan, conducted by [47], which showed that virus-carrying particles were
‘mainly concentrated near and downstream from the patients’ and there was
also an ‘exposure risk upstream’.
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Figure 2: Concentration of viral particles after one hour in a 8m × 8m room,
from solving Equation (9): (a) very poor ventilation, (b) poor ventilation, (c)
pre-pandemic recommended ventilation, (d) pandemic-updated recommended
ventilation. Parameter values are given in Table 1. The innermost contour in
each figure corresponds to 75R, 30R, 12R and 6.5R respectively.

Figure 3 shows the concentration in the room versus time evaluated at Po-
sition A:(5,4), and Position B:(8,8) (see Figure 1). These two positions were
chosen because, as seen in Figure 2, Position A is where the highest concentra-
tion is while maintaining 1m social distancing from the infectious person and
Position B is where the lowest concentration in the room is.
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Figure 3: Concentration of particles versus time in a case of very poor ventila-
tion (red dashed), poor ventilation (orange solid), pre-pandemic recommended
ventilation (green dot-dashed) and pandemic-updated recommended ventilation
(blue dotted), obtained solving Equation (9), with parameter values as given in
Table 1. (a) Evaluated at Position A: (5,4). In this case, a power law of the
form C(xA, yA, t) ∝ Rtα is obeyed, where α = 0.38; the trend deviates from this
power law when t ≈ 20 minutes since the presence of the walls influences the
solution more. (b) Evaluated at Position B: (8,8). In this case, the influence
from the walls is significant and hence no scaling law is obeyed.

Figure 3 shows that the concentration increases initially. Then the con-
centration in the three better-ventilation scenarios will reach steady states,
where the rate of change of the concentration falls below 0.01R particles/m2

per minute. The very poor-ventilation scenario will also approach a steady
state eventually (not shown on this figure).

Figure 3 shows that the lower the value of λ, the greater the time required
to approach the steady-state concentration. For the pandemic-updated rec-
ommended ventilation, the concentration in the room reaches a steady state
ranging from 4.09R (at Position B) to 6.23R (at Position A) particles/m2 after
38 minutes. For the pre-pandemic recommended ventilation, the concentration
in the room reaches a steady state that ranges from 8.26 R (at Position B)
to 12.14 R (at Position A) particles/m2 after 77 minutes. When there is poor
ventilation, the room only reaches steady state after 321 minutes (5.35 hours),
with the concentration at the steady state ranging from 34.55 (at Position B)
to 48.26 R (at Position A) particles/m2. When there is very poor ventilation,
the concentration room will finally reach a steady state after 24 hours at levels
ranging from 200.92R (at Position B) to 274.76R (at Position A) particles/m2.

In the high-concentration regions downwind and upwind from the infectious
person, such as Position A, advection dominates and Figure 3a shows that
we can obtain a power law of the form C(xA, ya, t) ∝ Rtα is obeyed, where
α = 0.38 and is independent of the amount of ventilation; only the constant of
proportionality depends on λ. The trend deviates from this power law (moving
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away by more than 5%) when t ≈ 20 minutes.
For positions that are outside the high-concentration regions, such as Po-

sition B, Figure 3b shows that no scaling law is obeyed, which is due to the
influence of the walls. Moreover, we see that the better-ventilation scenarios ini-
tially have higher concentrations before being overtaken by the worse-ventilation
scenarios. This result occurs because the movement of the infectious particles
in the direction orthogonal to the airflow is governed by the eddy diffusion co-
efficient, K, which increases with λ in (7). Hence, since the better-ventilation
scenarios have higher values of K, the infectious particles diffuse faster in the
y-direction to begin with. However, given sufficient time, the infectious particles
in the worse ventilation scenarios will also reach the farthest points of the room,
and the concentration there will eventually surpass that in the better-ventilation
scenarios. This result is a first indication that including a minimal amount of
ventilation could actually increase the risk of transmission compared to the case
of very poor ventilation.

Comparison with air sampling data

We identified only one paper in the literature that measured the concentration
of SARS-CoV-2 in the air while providing the dimensions of the room and the
ventilation air exchange rate [48]. In [48] two air samples were obtained in a
COVID-19 hospital ward of area 7m × 3.5m and a single patient present The
concentration was measured at the two inlets of the room: one inlet (Position
1) is at the left wall, about 2m from the head of the Patient (the viral source).
The other inlet, labelled as Position 2, is at the bottom right corner of the room,
about 4.8m from the head of the patient. Also, λ = 6h−1, which corresponds
to the pandemic-updated ventilation setting. Note that a COVID-19 patient
admitted to the hospital is also likely to exhibit symptoms such as coughing
and sneezing. Nevertheless, our model provides a relatively good agreement
with the data in [48], at low computational cost.

As our model determines the concentration of airborne infectious particles,
in order to have a valid comparison, the viral load of SARS-CoV-2 in airborne
particles, θ, is required. [49] has estimated the mean aerosol viral load for
breathing, using modelling to combine the size-distribution of exhaled breath
microdroplets with viral swab and sputum concentrations as approximation for
lung lining liquid, to be approximately 1.7 viral copies/m3 per breath. If we
combine this estimate from [49] with the breathing rate ρ2D and the breathing
particle emission rate R, we obtain θ = 4.53×10−4 virus copies/particle. Using
this value of θ, the comparison of the results of our model and the data from [48]
can be found in Table 4. Our model correctly predicts that the concentration
at Position 2 in [48] is lower than the concentration at Position 1. However,
our model over-predicts the concentration by about 50%. This over-prediction
could be due to the difficulties mentioned earlier in the section. Another possible
reason for the over-prediction is the height of the respiratory plume, hc, we
assumed in order to determine ρ2D. For an asymptomatic patient, we had
assumed a plume height of 0.2m. However, a COVID-19 patient may have a
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larger plume size, since a sneeze could have plume height of about 0.3m [50].
With a larger plume height, our predictions are a lot closer to the air sample
results in [48].

Given the several assumptions we made, our predictions are quite satisfac-
tory. For more accurate results we would need to do full 3D simulations. More
air sampling data of COVID-19 aerosols in worse-ventilation settings and with
asymptomatic infectious persons is also required in order to validate all the
airborne transmission models that have been created, including ours.

Concentration (viral copies/L)
Position 1 in [48] Position 2 in [48]

Data from [48] 30 16
Our model predictions
using plume height 0.2m 44.2 28.1
Our model predictions
using plume height 0.3m 29.5 18.7

Table 4: Comparison of our predictions with air sampling data from a hospital
ward [48].

Comparison with CFD Models – recirculation effects

We next compare our results to the results obtained by the CFD models in
[16] and [17]. Both of these models studied a superspreader outbreak in a
restaurant in Guangzhou, China that occured on January 23, 2020 [51]. The
restaurant was found to have λ = 0.77 h−1 [16], which is similar to the value
of λ we considered in the poor-ventilation scenario. In [16], they found that
a ‘contaminated recirculation envelope’ was created in the restaurant. In this
recirculation envelope, the air-conditioning jet carried the infectious aerosols to
the opposite window, then the jet bent downward and returned at a lower height
before finally the contaminated air rose and returned to the air-conditioning
unit, repeating the cycle. Our model takes into account this recirculation, but
in 2D.

The CFD simulation conducted by [17] showed that in this recirculation
envelope, which had a width of 3m, the average concentration after 15 minutes
is as high as the concentration directly next to the infected person, while the
average concentration in this region after 60 minutes is four times higher.

Our results, as seen in Figure 4a, show that there is a 3m-wide region centred
at the infectious person where after 15 minutes the concentration is as high as or
even higher than the concentration 0.5m downwind from the infectious person
if there was no recirculation in the room (Figure 4b). After an hour, our model
shows that the concentration in this region is approximately four times greater
(see Figure 2b). Therefore, our results are in agreement.
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Figure 4: (a) Concentration of particles after 15 minutes in a room with poor
ventilation, obtained solving Equation (9), (b) steady-state concentration of
viral particles if there is no recirculation, from solving Equation (9) with m =
n = 0. Parameter values are given in Table 1.

3.2 Maps of Time to Infection (TTI) by airborne trans-
mission

In this section we construct TTI maps for the four ventilation settings we con-
sider, in an 8m × 8m room. Figure 5 is for very poor ventilation, Figure 6
for poor ventilation, Figure 7 is for pre-pandemic recommended ventilation and
Figure 8 is for pandemic-updated recommended ventilation.

As the TTI depends on the concentration, Figures 5, 6, 7 and 8 all have
similar shapes to Figures 2a, 2b, 2c and 2d respectively. This implies that the
greatest risk of airborne transmission indoors is directly downwind from the
infectious person, and the risk decreases as we travel away from the source in a
direction orthogonal to the airflow.
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Figure 5: TTI due to an infectious person at the centre of a 8m × 8m room
with very poor ventilation, from solving Equations (9) and (11): (a) talking,
(b) talking with a mask, (c) breathing, (d) breathing with a mask. Parameter
values are given in Table 1. The innermost contour in each figure corresponds
to 10 min, 10 min, 45 min and 80 min respectively.
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Figure 6: TTI due to an infectious person at the centre of a 8m × 8m room with
poor ventilation, from solving Equations (9) and (11): (a) talking, (b) talking
with a mask, (c) breathing, (d) breathing with a mask. Parameter values are
given in Table 1. The innermost contour in each figure corresponds to 15 min,
30 min, 90 min and 160 min respectively.

17



x (m)

y (m)

(a)

x (m)

y (m)

(b)

x (m)

y (m)

(c)

x (m)

y (m)

(d)

Figure 7: TTI due to an infectious person at the centre of a 8m × 8m room
with the pre-pandemic recommended ventilation, from solving Equations (9)
and (11): (a) talking, (b) talking with a mask, (c) breathing, (d) breathing with
a mask. Parameter values are given in Table 1. The innermost contour in each
figure corresponds to 30 min, 50 min, 280 min and 420 min respectively.
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Figure 8: TTI due to an infectious person at the centre of a 8m × 8m room
with the pandemic-updated recommended ventilation, from solving Equations
(9) and (11): (a) talking, (b) talking with a mask, (c) breathing, (d) breathing
with a mask. Parameter values are given in Table 1. The innermost contour in
each figure corresponds to 45 min, 80 min, 385 min and 770 min respectively.

From our TTI results, we quantify the risk of airborne transmission in the
room at a given time, I(t), as follows

I(t) = Probability(a person is standing at a position with TTI < t)

= (fraction of room area where TTI < t)× 100%.
(12)

In this work, we take a risk tolerance of 5% for the 8m × 8m classroom. We
choose this tolerance as it corresponds to one new infection in a class of twenty
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students, if the Safe Occupancy Time (SOT) is exceeded. Hence if I(t) ≥ 5%,
we will consider the risk of airborne transmission in the room to be considerable.
This criterion can be easily modified depending on the risk tolerance desired by
those operating indoor spaces or imposed by government guidelines.

If the room has very poor ventilation, Figure 5 shows that the TTI is within
three hours, which we assume is a reasonable duration for a social gathering,
for all the values of R studied. Therefore, given sufficient time in this room, the
risk of airborne transmission becomes considerable.

When there is poor ventilation, Figure 6 shows that without a mask the risk
of airborne transmission will become considerable with time. In the aforemen-
tioned Guangzhou restaurant super-spreader outbreak, which is similar to our
poor-ventilation scenario, the person believed to be the source of the outbreak
was in the restaurant for 1 hour and 20 minutes, the infected diners downwind
shared the room for 50 minutes and the infected diners upwind shared the room
for 1 hour and 15 minutes [16]. This is in agreement with our results in Figure
6a, which shows that the TTI due to a talking person is 20–25 minutes downwind
and 25–45 minutes elsewhere in the room. We also note that if the infectious
person wears a mask and remains silent (as in Figure 6d), then the TTI in most
of the room is above three hours, and hence the risk of airborne transmission is
minimised. Hence, talking should be minimised as much as possible and masks
should be worn at all times in closed spaces, as per university guidelines.

If the room has good ventilation, as in Figures 7 and 8, then, provided
the infectious person is quiet, the TTI in the room is above three hours and
the risk of airborne transmission is minimal. However, good ventilation does
not completely eliminate the risk of airborne transmission. If the infectious
person speaks for sufficient time, the risk of airborne transmission will become
considerable.

At the time of writing, the model most used by the general public to estimate
the risk of COVID-19 aerosol transmission was developed by Jimenez [9]. This
model is built on the Wells–Riley model [7, 8], which is probabilistic and assumes
that the air in the room is instantly well mixed. Using (12), we compare our
results with the predictions from their model for a quiet activity using the same
room dimensions and ventilation scenarios.

Our TTI results (Figures 5c, 6c, 7c, 8c) suggest that the risk of airborne
transmission after an hour is minimal, and the Jimenez model agrees with a
predicted infection risk of 0.86%–2.46%. In the case of two hours, for the two
better ventilation scenarios, our TTI graphs (Figures 7c and 8c) and the Jimenez
model (1.89 and 3.41%) suggest that the risk of airborne transmission is minimal.
However, for the very poor- and poor-ventilation cases (Figures 5c and 6c), the
risk has become more considerable: the Jimenez model estimates a probability
of infection of 10.91% and 7.84%, while our results suggests that the risk is
approximately 36% and 15%. Therefore, our results are in agreement over
which scenarios are risky. Our model predicted lower risk for the two better-
ventilation scenarios than the Jimenez model, and higher risk for the two poor
ventilation scenarios than the Jimenez model. This difference arose for two
reasons: (1) the Wells–Riley model assumed the room is well mixed, while in

20



our model the mixing of the air was dependent on the ventilation available and
(2) the Wells–Riley model assumes a Poisson distribution for the probability of
infection while our model assumes that everyone who inhales the critical dose
is infected.

Based on our results, we recommend that institutions enact time limits for
the usage of their indoor rooms to minimise the risk of airborne transmission.
Each room’s Safe Occupancy Time (SOT) should be decided based on its TTI
map, which is dependent on the room’s size, geometry, ventilation and the
activity conducted in it. Furthermore, this time limit will depend on the risk
tolerance of the institution, whether it has a mandatory face mask policy, and
what social distancing guidelines it follows.

Table 5 shows the SOT for the different activities in the 8m × 8m classroom
when enacting 1m social distancing at our selected risk tolerance of 5%, i.e.
I(SOT) = 5%. These results show that a presentation made by an infectious
person carries considerable risk of airborne transmission – the SOT is less than
two hours even when the infectious person wears a mask in the best ventilation
scenario studied. For a quiet activity, if the ventilation in the classroom is very
poor or poor, an SOT of 64 minutes or 110 minutes has to be implemented
respectively. On the other hand, if the ventilation in the room is good enough,
a quiet activity incurs very little risk of airborne transmission.

In these calculations of the SOT, we assumed that there was only one infec-
tious person in the room. In order for the SOT to be effective, we recommend
that the occupancy limit of the room not be solely dependent on the social
distancing guidelines, but it should also take into account the prevalence of
COVID-19 cases in the local community.

Ventilation Scenario
Presentation Quiet Activity

No mask With mask No mask With mask
Very poor ventilation 16 min 24 min 64 min 100 min
Poor ventilation 25 min 39 min 110 min 176 min
Pre-pandemic recom-
mendation

37 min 61 min 240 min(*) 462 min(*)

Pandemic-updated rec-
ommendation

52 min 96 min 447 min(*) 885 min(*)

Table 5: The Safe Occupancy Time (SOT) for different activities in an 8m ×
8m room if 1m of social distancing is observed for a risk tolerance of 5%, from
solving Equation (12) using the TTI data. The results marked with (*) have
times that exceed three hours, which we deem corresponds to minimal risk of
airborne transmission.

We note that these SOTs are valid only when the air in the room is free
of airborne infectious particles. Therefore, we recommend after each use of the
room that the room is left vacant with the ventilation system running so that
the air may be refreshed, and the room may be used to its full SOT without
concern. We can calculate the vacancy time required by modifying the source
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function (3) to a rectangular function ending at the SOT, i.e.

S =

{
Rδ(x− x0)δ(y − y0) if t < SOT

= 0 otherwise
(13)

We will consider the air of the room as clean if the concentration of airborne
particles is below 13.8 particles/m2 as clean. We choose this threshold because
if the concentration in the room remains below this level the TTI in the room
will be greater than three hours. At this concentration, the SOT presented in
Table 5 for presentations is not increased by much (less than 5 minutes), so
the same SOT can be observed with a small increase in risk. However, as the
concentration in the room is much lower when the infectious person is quiet, if
the room has the threshold level of concentration, the TTI can fall by as much
as 20–40 minutes, so the SOT needs to be recalculated.

In Table 6, we present the vacancy time required to clean the air after each
SOT has been reached. Table 6 shows that the vacancy time increases when
the ventilation is worse, as expected. We note that, if the classroom has the
ASHRAE pre-pandemic recommended ventilation, these vacancy times together
with the SOT suggest that the scheduling should be 37-minute lessons followed
by 35-minute vacancy times. If the classroom has the pandemic-updated recom-
mended ventilation, then the scheduling can be 52-minute lessons followed by
11-minute vacancy times. For quiet activities in classrooms with good ventila-
tion, the concentration at steady state is low enough that we consider the air in
the room clean and there is no need to leave the room vacant. However, if the
classroom has poor ventilation, then the required scheduling becomes 25-minute
lessons followed by 166-minute vacancy times.

Our results show that wearing a face mask reduces the risk of airborne
transmission, as expected. When a mask is worn, the SOT in the room increases
(see Table 5), and the required vacancy time decreases (see Table 6). Hence,
the recommended scheduling for a classroom with pre-pandemic recommended
ventilation becomes 61-minute lessons followed by 23-minute vacancy times, and
if it has the pandemic-updated recommended ventilation it becomes 96-minute
lessons followed by 5-minute vacancy times. If the ventilation in the classroom
is poor, then the recommended scheduling is 39-minute lessons followed by 138-
minute vacancy times.
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Ventilation Scenario
Presentation Quiet Activity

No mask With mask No mask With mask
Very poor ventilation 846 min 697 min 360 min 218 min
Poor ventilation 166 min 138 min 60 min 18 min
Pre-pandemic recom-
mendation

35 min 23 min 0 min 0 min

Pandemic-updated rec-
ommendation

11 min 5 min 0 min 0 min

Table 6: The required vacancy time to refresh the air after different activities
in an 8m × 8m room where the SOT is observed, obtained solving Equation
(9), for the four ventilation scenarios we consider and for the infected person
wearing a face mask or not. Parameters are as in Table 1.

Figures 9 and 10 show the relationship between the TTI and λ at Positions
A and B respectively. In Figure 9 we observe further evidence of the scaling-law
behaviour at Position A that was identified in Figure 3, by now finding that the
TTI satisfies the relationship TTI∝ λβ , where β = 0.37 for λ < 1h−1, and a
linear relationship, i.e. β = 1, for λ > 1h−1.

Outside the high-concentration region downwind and upwind, such as at
Position B, Figure 10 shows us that when λ is large, the risk of airborne trans-
mission decreases. However, the TTI also increases as λ → 0. This is due to
the slower initial build-up of concentration as seen in Figure 3b. Crucially, this
non-monotonic behaviour demonstrates that very low ventilation increases the
risk of airborne transmission in the area of the room downwind and upwind
from the source but decreases the risk everywhere else. This supports the initial
observation made in Figure 3.

λ (h−1)

TTI (minutes)

(a)

λ (h−1)

TTI (minutes)

(b)

Figure 9: TTI versus the air exchange rate, λ, evaluated at Position A, from
solving Equations (9) and (11): (a) talking (b) breathing. Red solid line: No
mask; Blue dashed line: Wearing a mask. All other parameter values are given
in Table 1.
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λ (h−1)
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Figure 10: TTI versus the air exchange rate, λ, evaluated at Position B, from
solving Equations (9) and (11): (a) talking (b) breathing. Red solid line: No
mask; Blue dashed line: Wearing a mask. All other parameter values are given
in Table 1.

Finally, we consider the relationship between the TTI and R, the emission
rate of airborne infectious particles, more closely, as well as the effect of the
room’s area on the TTI. We consider several other rooms that can also be
found in schools and universities: a personal office (4m × 4m), an auditorium
or lecture theatre (30m × 15m), and a convention centre or indoor football field
(105m × 68m). Figure 11 shows that there is a power law of the form TTI
∝ Rγ . For the 8m × 8m classroom we consider, γ = −0.71. We note that as the
size of the room increases to infinity, γ → −1. This result provides the specific
relationship for how the TTI decreases as R increases. Furthermore, since γ
decreases with increasing room size, this shows that the dependence of the TTI
on R becomes weaker with increasing room size.
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Figure 11: Log–log plot of TTI versus the rate of particle emission, R, in rooms
with poor ventilation, evaluated at 1m downwind from the infectious person,
from solving Equations (9) and (11). From top to bottom: the top dashed line
represents an infinite room; the dotted line represents a convention centre (105m
× 68m); the dot-dashed line represents an auditorium (30m × 15m); the solid
line represents a classroom (8m × 8m); and the bottom dashed line represents
a personal office (4m × 4m). All other parameter values are given in Table 1.

4 Summary and conclusions

In this paper, we have addressed the need to develop a quick and efficient
model to determine the concentration of airborne particles carrying the SARS-
CoV-2 virus in various typical environment settings that takes into account
the turbulent airflow. Our model is based on the advection–diffusion–reaction
equation. We applied the model to an 8m × 8m room, which represents an
average classroom. Then we used the results, an estimated infectious dose from
[14] and a formula for the number of infectious particles inhaled adapted from
[14] and [19] to calculate the time to infection (TTI) by airborne transmission
of COVID-19 in each scenario.

Our model shows that the concentration in the room increases initially, then
reaches a steady state, where the rate of increase of the concentration is less
than 0.01R particles/m2 per minute (see Figure 3). The time until this steady
state is reached is faster and the steady-state concentration is lower when the
air exchange rate, λ, is greater. Furthermore, the concentration, and hence the
risk of airborne transmission, in the room is highest downwind and upwind from
the infectious person (see Figure 2). In this downwind region, the concentration
initially obeys a power law of the form C ∝ Rtα.

Our results show that the TTI in a room is dependent on the geometry of
the room, the ventilation setting, and the activity being conducted. Due to the
build-up of infectious airborne particles indoors, depending on the scenario, the
TTI may be achieved fairly quickly. For example, an average classroom with
the pre-pandemic ASHRAE recommended ventilation, the minimum TTI in the
room from a presentation from an infectious person can be reached in as little
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as 35 minutes (see Figure 7a). As a result, we recommend that institutions
enact time limits for the usage of their indoor rooms so that the risk of airborne
transmission in the room is minimised. In order to determine the room’s Safe
Occupancy Time (SOT), the TTI results can be used to quantify the risk of air-
borne transmission at any given time (see (12)) then the SOT can be calculated
to match the preferred risk tolerance (see Table 5). We further recommend that
the room remain vacant after use with the ventilation system running in order
to clean the air in the room (see Table 6).

Our results also show that the infectious person wearing a mask of 50%
efficiency increases the SOT in a classroom by as much as 50–98%. The ef-
fectiveness of the mask increases with the ventilation available in the room.
Therefore, in line with governmental guidelines, we recommend the wearing of
masks indoors.

The results from our model also confirm the importance of good ventilation
to minimising the risk of airborne transmission of COVID-19. For example, if
the ventilation in a classroom is poor, the SOT in the room for a quiet activity
is 110 minutes, but if the air exchange rate is increased to meet the ASHRAE
pandemic-updated recommended ventilation, the risk of airborne transmission
becomes minimal and the SOT increases to 447 minutes (see Table 5). Therefore,
in order to maximise the usage of indoor space, we recommend institutions
increase the ventilation available as much as possible.

We observe that the TTI obeys the scaling-law behaviour in the form of TTI
∝ λβ in the downwind region (see Figure 9). Outside this high concentration re-
gion, the TTI exhibits a non-monotonic relationship with λ: it decreases quickly,
then increases (see Figure 10). This demonstrates that very low ventilation in-
creases the risk of airborne transmission in the area downwind and upwind from
the infectious person, but decreases the risk of airborne transmission everywhere
else.

There is also a power law relation between the TTI and R, the emission rate
of airborne infectious particles, of the form TTI ∝ Rγ (see Figure 11). We note
that as the size of the room increases to infinity, γ → −1.

In conclusion, the model presented in the paper can be implemented to
calculate the TTI for rooms of different sizes under different activities. It can
also be implemented to quantify the effectiveness of changing the ventilation
available in the room. The modelling framework contains a series of parameters
that may easily be adjusted in light of new guidelines on ventilation or evidence
on the infectious dose. Most importantly for the current COVID-19 pandemic,
it can be implemented quickly on a computing device available to the average
person.

5 Future work directions

There are a variety of next steps that could be taken with this work. Below, we
outline some avenues that would be interesting to explore further.
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1. More complex ventilation systems
In our model, we modelled the ventilation system as a global sink of air-
borne viral particles. The model could be improved by modelling air vents
as local sinks. Furthermore, other types of ventilation options could also
be considered, such as open windows.

2. More complex room geometries or air velocities
We examined the simple scenario of a square room with uniform air veloc-
ity from the AC unit. Another possible direction would be to investigate
more complex geometries or more complex air flows. Implementation of
this into the model would increase the computational cost.

3. Multiple sources
We modelled only one infectious person. We could extend the model by
including multiple infectious people, so the source function would become

S =

NS∑
i=1

Riδ(x− xi)δ(y − yi)H(t− ti), (14)

where NS is the number of infectious people, Ri is their respective particle
emission rate, and (xi, yi) and ti are their respective positions and start
times. As the source function is linear, the overall solution can be obtained
by adding the response for each individual source.

4. Symptomatic source
We assumed the infectious person was asymptomatic/presymptomatic so
they only released infectious airborne particles by breathing or talking.
We can extend our model to a symptomatic COVID-19 patient who also
released particles by coughing and sneezing by modifying the source func-
tion. For this, we could follow [23] and model a sneeze or cough as an
instantaneous point source, i.e.

Scough = Aδ(x− x0)δ(y − y0)δ(t− t0), (15)

where A is the number of airborne particles produced by a sneeze of cough.
Hence the source function becomes

S = δ(x− x0)δ(y − y0)

(
RH(t− t0) +

M∑
i=1

Aiδ(t− ti)

)
, (16)

where M is the number of coughs and sneezes.

5. Deactivation and settling factors
We assumed that the virus remains infectious and airborne for the entire
time considered. Our model can be extended by including a deactivation
and settling factor, which can be modelled as a sink to the concentration

Sinact = −χC, (17)

where χ is the deactivation factor.
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6. Critical infectious dose
In calculating the TTI, we assumed a critical infectious dose, PI particles,
which if inhaled would cause the receiver to become infected. In real life,
the critical infectious dose varies from person to person due to the strength
of each person’s immune system. Hence, a median infectious dose – the
dose required to infect half the population – is usually considered. The
deterministic assumption of a fixed critical dose we did could be replaced
with a probabilistic approach to the infectious dose.

7. 3D modelling
With the goal of quick and easy implementation, we built our model in
2D. This model can be extended to 3D without the need for any extra
assumptions or parameters beyond those already presented in this paper.
The model will be more accurate because we would not have to make
assumptions about the height of the turbulent respiratory cloud, hc, which
we used to convert from 3D to a 2D model in this work. However, it would
come with the cost of being more computationally expensive.
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the effect of the respiratory droplet generation condition on COVID-19
transmission. Fluids, 5(3):113, 2020.

[14] V. Vuorinen, M. Aarnio, M. Alava, V. Alopaeus, N. Atanasova, M. Auvinen,
N. Balasubramanian, H. Bordbar, P. Erästö, R. Grande, et al. Modelling
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