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1. Introduction

1.1 Acknowledgments
Before presenting the work I made during this internship, I would like to thank the team Cemosis in the IRMA

who welcomed me during these six months. Especially I thank Christophe Prud’homme who supervised me and helped
me when I was lost in the new notions I discovered during the internship. Moreover, I thank Romain, Vincent, Zohra,
Luca, Philippe, François, Yannick, Abdoulaye, Christophe (Trophime), and Joubine from the team, which gathered
every Monday, even if the health context prevents those meeting to stand face-to-face. I also thank my colleagues
intern, which I shared in the office : Killian, Khaoula, Sofian, Romain, Youssef, and Guillaume. Moreover, I thank
Lilian who helped me to have a better understanding of how the eye is composed in the body [4].

Finally, I would like to thank Christophe Prud’homme, Marcel Szopos, Giovanna Guidoboni, and Lorenzo Sala who
helped me [14, 8] and accepted me to direct and advise for the Ph.D. thesis that will begin in October.

1.2 Context of the internship
The eye, with its special connection to the brain and its accessibility, offers non-invasive access to a large set of

measures that might help in the early diagnosis and clinical care of neurodegenerative diseases. But the characterization
of ocular biomarkers representing the cerebral state is far from trivial : many factors can influence measurements that
can vary among individuals.

In the framework of the Eye2brain project [16], the Ocular Mathematical Virtual Simulator (OMVS) is developed.
This is a reliable and efficient computational framework of the Eye2Brain system, allowing for computer-aided
interpretations of the clinical data.

This internship takes place after the thesis of Lorenzo Sala [17], who developed three levels of mathematical
architecture of the OMVS.

1.3 Organisation during internship
The internship took place during a special context of the pandemic. Because of it, all meetings could not be

held in physic, but mostly on Zoom. It didn’t avoid weekly team meetings to take place every Monday, with all the
collaborators of Cemosis. The main advantage of the visio-conference is that people far from Strasbourg could attempt
them.

During those meetings, we shared our progress, asked questions. Sometimes, I made a more detailed presentation
on different methods or models I worked on. The slides of those presentations are gathered in the Talks directory on
the Github repository eye2brain-doc.

• Presentation of HDG method (on March, 8th), see chapter 6.

• Summary of the first two months of the internship (on April, 6th).

• Presentation of 3D-0D coupling and splitting algorithm (on April, 26th), see chapter 4.

• Presentation to the École Doctorale (on June, 16th), in front of the jury for the PhD thesis funding.

• Defense of the internship (on August 26th or 27th).

During the internship, I mainly worked on three Github repositories :

• feelpp [5], which contains the source code of Feel++ (see appendix A). I made some contributions to this repository,
especially in a branch dedicated to Python development (see issue 1626). This branch has been merged with the
main branch. I also documented my contribution in Feel++ documentation.

• eye2brain, which is the repository dedicated to the project Eye2Brain. It is possible that the function described in
this report will be updated in the future 1

• eye2brain-doc, containing this present report the supports of the presentation I made.
1at the compilation of the report, the state was on commit a4ccd2abef8bcc6c85f54e3b1ec3d0438fef9472
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1.4. OBJECTIVES CHAPTER 1. INTRODUCTION

1.4 Objectives
The main objective of the internship is to develop a reduced-order method for Darcy problem in mixed form, for

instance, to use it for sensitivity analysis.

To reach this objective, I will have to handle some tools and get familiar with the objects used. The tools used will
be detailed in this report, we can mainly name Feel++ (A), Dymola (5.2) or Salome (2.2) for the softwares used, and
the HDG method (6) and the time-splitting algorithm (chapter 7) for the method studied.

This report is divided into three parts. The first one is dedicated to the models and how to simulate them, presenting
the geometrical and physical modeling of the eye. In the second part, we will focus on theoretical methods developed
to simulate the models described in the first part. Then the third part details a reduced-order model : the reduced
basis method.
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Part I

Modelisation and simulation

In this part, we will focus on the modelization of the geometry of the eye and how to simulate the models. The
chapter 2 will present the geometrical modeling of the eye, and how to mesh this geometry. In chapter 3, we will
study the verification and validation approach for the geometry generated. Finally, chapter 4 will present the physical
modeling and the tools used to simulate it.
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2. Geometrical modeling

The geometry of the eye was made some years ago, during Lorenzo’s thesis [17], with a previous version of SALOME
(7.4.0), but this script is no longer compatible with the latest version (9.6.0).

With the new version, the operations of SALOME don’t lead to the same result, as we will see below. Moreover, in
the code produced by Lorenzo, some parts of the eye (namely the posterior and anterior chambers) were not included.

2.1 Anatomy of the eye
The eye, as shown in figure 2.1, is an organ allowing to capt light and convert it into an electric signal, allowing the

brain to interpret it. At the front of the eye, we have the cornea interacting with the outside and two-chamber, called
anterior and posterior chamber filled with the aqueous humor. Around the eye, moving inward, we have several layers
of tissues : the sclera, the choroid, the retina and the vitrous humor. The structure which separate the vitreous from
the aqueous humor is composed of iris, lens1 and ligament.
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Figure 2.1: Anatomy of the eye

The choroid regulates the temperature and the volume of the eye. It also supplies the retina with nutrients. A
large part of the blood circulating in the eye, 85% of it, because its main function is to conduct arteries and nerves to
the other structures of the eye.

The retina is the light-sensitive layer. It is composed of many sub-layers and contains the cells that can capt the
light, rods and cones. In our geometry, we are interested in the layer where the retinal ganglion is : these neurons are
responsible for the transmission of the visual information from the retina to the brain through the optic nerve.

The ophthalmic artery supplies the blood to the eye. This vessel is located close to the optic nerve. From this
artery, the optic retinal artery enters the optic nerve. In parallel, the central retinal vein drains the blood from the eye.

The lamina cribosa2 is an extension of the sclera, as presented on figure 2.2. It allows the retinal ganglion cells and
the central retinal vessels to access the eyeball-protected environment. This part of the eye was central in the work of
Lorenzo’s thesis [17].

2.2 Initial geometry
The first step consists of loading a STEP file, which contains the geometry of the eye, untreated. This STEP file

is large (more than 1 Mo), so it is stored with Git-lfs. This geometry is composed of many solids, representing the
different parts of the eye. It is represented in figure 2.3, on an horizontal cut.

1in french cristallin
2in french lame criblée de l’œil
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2.2. INITIAL GEOMETRY CHAPTER 2. GEOMETRICAL MODELING

Fr
om

[1
1]

Figure 2.2: Anatomy of the back of the eye and vascular supply

Figure 2.3: Horizontal cut of the eye, from the STEP file

The parts of the eye are like the following :

• The cornea (in yellow),

• the iris (in dark blue),

• the vitreous humor (in orange),

• the ligament (in purple),

• the lens (in green),

• the choroid (in pink),

• the sclera (in white),

• the retina (in black),

• the optic nerve (in grey),

• and the artery and vein (in red and blue respectively),
inside the optic nerve.

In reality, the vein and artery in the optic nerve are not disposed of as in the geometry : as we can see on figure 2.1,
the network of vein and artery goes further in the eye to irrigate the tissues in the blood. The actual vascular anatomy
is shown on figure 2.2

The geometry from the STEP file is modified, especially at the back of the eye. New elements are created :

• The aqueous humor which is composed of the anterior and posterior chambers between the cornea and the

10



CHAPTER 2. GEOMETRICAL MODELING 2.3. COMPATIBILITY ISSUE

Figure 2.4: View of the ligament from the inside of the eye : on this figure, only ligament, iris and aqueous humor are
shown.

ligament (this volume is not represented on figure 2.3 above, but it is represented in brown on figure 2.5(d)),

• The lamina (in light green),

• The pia (in cyan), the contour of the optical nerve.

One discussion was raised from the definition of the volume of the aqueous humor. As we will see later, in [10] this
volume is separated into two sub-volumes : the anterior chamber corresponding to the part between the cornea and
the iris, and the posterior chamber which is the part between the iris and the ligament. In the geometry loaded from
the STEP file, those two chambers communicate through a hole corresponding to the pupil. From the figure in [6,
Figure 1,p.163], it seems to be a hole here, allowing the aqueous humor to pass through it. After a discussion with a
medicine, student [4], there is indeed a hole in this part of the eye. Furthermore, the geometry of the ligament in our
geometry which has a sun-like shape, see figure 2.4, is quite different from reality. In the eye, the vitreous and aqueous
humor are separated by the ligament which acts more like a sponge, while in our geometry the two humors are in
direct contact.

The other elements are modified, for example, the sclera is cut among a plane.
The figure 2.5(a) shows an external view of the eye, which doesn’t show a lot ! On figure 2.5(c) is shown a cut of

the back part of the eye, where new elements are created.
Note that in the figures, the aqueous and vitreous humor is not always shown, because they would hide the inside

of the eye.

2.3 Compatibility issue
The main issue was that the code was made with SALOME v7.4.0 (referred as v7 in the following), and the results

of the operations made with the latest version (v9.6.0, referred as v9 ) are different. For example, when we extract
with v7 the face shapes of a modified version of the optic nerve (precisely the object NewOptic_2), it gives one face
that is not extracted by v9 anymore, this extra face is represented on figure 2.6(a). This face exists because, in the
construction, the two opposite faces of the lamina are not parallel. This leads to folds on a face as we can see in
figure 2.6(b), which caused an error in the code : when v9 try to make operations on the face with the fold, such as
intersection, the result is an empty object, while it is not on v7.

To solve this issue, we use another way to create the partition [18] using a plane to cut the optic nerve without any
fold. See listing 1 to see the detail of the code.

2.4 Meshed geometry
We can now mesh this geometry. With SALOME, we created groups of solids and faces, to mark them with names.

Those names will be used in the future to set conditions in simulations.
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2.4. MESHED GEOMETRY CHAPTER 2. GEOMETRICAL MODELING

(a) External view of the eye (b) Vertical cut of the eye

(c) Vertical cut of the back of the eye, after modification

(d) Vertical cut of the front of the eye, after modification

Figure 2.5: Geometry after modification
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CHAPTER 2. GEOMETRICAL MODELING 2.4. MESHED GEOMETRY

(a) Extra face on v7 (b) Face with fold on v9

Figure 2.6: Issues on the geometry

1 [FaceOpt_1, FaceOpt_2, FaceOpt_3, FaceOpt_4, FaceOpt_5, FaceOpt_6, FaceOpt_7, FaceOpt_8,␣
↪→FaceOpt_9, FaceOpt_10] = geompy.ExtractShapes( OpticNerve_1, geompy.ShapeType["FACE"], True)

2 [EdgeOpt_1, EdgeOpt_2, EdgeOpt_3, EdgeOpt_4, EdgeOpt_5] = geompy.ExtractShapes( FaceOpt_5,␣
↪→geompy.ShapeType["EDGE"], True)

3 FaceToCutOpt = geompy.MakeFaces ( [EdgeOpt_1, EdgeOpt_2, EdgeOpt_4, EdgeOpt_5], True )
4 PlaneToCutOpt = geompy.MakePlaneFace(FaceToCutOpt, 10)
5 PartitionOpt = geompy.MakePartition([OpticNerve_1], [PlaneToCutOpt], [], [], geompy.ShapeType[

↪→"SOLID"], 0, [], 0)
6 [laminaFace_1, laminaFace_2, laminaFace_3, laminaFace_4, laminaFace_5] = geompy.

↪→ExtractShapes(Scaled_Lamina_w_hole_2, geompy.ShapeType["FACE"], True)
7 Plane_1 = geompy.MakePlaneFace(laminaFace_5, 5)
8

9 Partition_1 = geompy.MakePartition([OpticNerve], [Plane_1], [], [], geompy.ShapeType["SOLID"],␣
↪→0, [], 0)

10 [PartOpticNerve_1, PartOpticNerve_2] = geompy.ExtractShapes(Partition_1, geompy.ShapeType['SOLID
↪→'],True)

11 [OpticCut_1, OpticCut_2, OpticCut_3] = geompy.ExtractShapes( PartitionOpt, geompy.ShapeType[
↪→"SOLID"], True )

12 NewOptic = geompy.MakePartition([OpticCut_1, PartOpticNerve_2], [], [], [], geompy.ShapeType[
↪→"SOLID"], 0, [], 0)

Listing 1: Salome code to get the same NewOptic as 7 gave

Many faces are at the intersection between two solids of the eye. We name them after the two solids involved, classed
in alphabetical order. For instance, the group of commons faces to OpticNerve and Pia is named « OpticNerve_Pia
». Table 2.1 tells whether or not such solid have interfaces or not.

Then other groups of faces are set, with the remaining faces on each solid :

• Lamina_Out

• Lamina_Hole

• BC_Artery

• BC_Choroid

• Cornea_externalBC

• Cornea_internalBC

• BC_Iris

• BC_Lens

• BC_Ligament

• BC_OpticNerve

• BC_Pia

• BC_spherical_Retina

• Sclera_externalBC

• Sclera_internalBC

• BC_Vein

• BC_VitreousHumor

The crossed-out names in the previous list correspond to markers that were present in the previous geometry on v7
when aqueous and vitreous humor were not included.

The lamina gets a special mesh, with smaller elements than the other parts of the eye. This is because this part is
crucial in the coupling of the model.

Finally, the 14 volume groups in the mesh are :
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2.5. RUN THE SALOME PIPELINE CHAPTER 2. GEOMETRICAL MODELING
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AqueousHumor X X X X X X
Artery X
Choroid X X X X
Cornea X X
Iris X X X X X

Lamina X X
Lens X X X

Ligament X X X X
OpticNerve X X X X X

Pia X X
Retina X X X X
Sclera X X X X X X X
Vein X

VitreousHumor X X X X X X

Table 2.1: Interfaces between solids

• Cornea

• Iris

• Ligament

• Lens

• AqueousHumor

• Sclera

• Choroid

• Retina

• Lamina

• Vein

• Artery

• Pia

• OpticNerve

• VitreousHumor

The final mesh is represented on figure 2.7, with on the one hand the total mesh and on the other hand only the
mesh on the faces. On this mesh, obtained with default values set in the Salome pipeline, the mesh has 130 249 nodes
and 871 499 elements.

2.5 Run the Salome pipeline
To run the script :

path/to/SALOME-9.6.0/salome [-t] eye.py
[args:[--hsize_eye=],[--hsize_lamina=],[--distance=],[--width=],[--hole=],[--shift=],
[--eye_length=],[corneal_thickness],[--mesh]]

The option -t runs Salome witout the Graphical User Interface. The optionnal arguments are explained in this
table :

Argument Description Type Default
--hsize_eye max size of the h of the computational mesh for the eye float 1.0
--hsize_lamina max size of the h of the computational mesh for the lamina float 0.05
--distance distance from retina/sclera [mm] float 0.25
--width lamina cribosa width [mm] float 0.2
--hole radius if the hole in in lamina cribosa [mm] float 0.2
--shift shift hole from lamina cribosa center [mm] float 0.3
--eye_length length of main axis of the eye [mm] float 26.1
--corneal_thickness mean value of the corneal thickness [mm] float 1.0

The option --mesh activates mesh generation.
To figure the weight of different nodes, this video made with Paraview shows the meshed geometry.
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CHAPTER 2. GEOMETRICAL MODELING 2.6. COMPUTATIONAL PERFORMANCES

(a) Volumic mesh (b) Faces mesh

Figure 2.7: Meshed eye

2.6 Computational performances
In this section, we are interested in how the parameters hsize_eye and hsize_lamina influence the time of

execution and the size of the geometry obtained.
To do such measures, a little bash script is written. While it is executed, the Python script displays information in

the standard output. With a redirection of this flow in a text file, we can look at it to get the information needed. For
example in listing 2, we get the results for the mesh generation time when hsize_eye vary.

1 #! /bin/sh
2 DIR="/tmp/mesh"
3 mkdir $DIR
4 echo "h\tmesh" > values.csv
5 for h in 0.5 1 2 3 5 10
6 do
7 ./salome -t eye.py args:--hsize_eye=$h,--mesh > $DIR/output$h.txt
8 MESH_TIME=`grep "Mesh generation time" $DIR/output$h.txt | grep -v -E '^[[:space:]]*#' |␣

↪→cut -d " " -f 5`
9 echo "$h\t$MESH_TIME" >> values.csv

10 done

Listing 2: Extract of the bash script

On table 2.2, we give the characteristics of the pipeline and the output mesh, for different values of hsize_eye, the
quantity hsize_lamina stays constant at its default value. We can see that the time to create the geometry doesn’t
depend on the parameters given, while mesh time does. This is logical because those parameters are not involved in
the creation of geometry.

Now we are going to compare the time of execution with what Lorenzo obtained on the previous version of Salome
[17, Table 6.2]. The values obtained are presented in table 2.3. As the geometry is quite different now, and as the
computation has not been made on the same computer with a different version of SALOME, it is normal to find
different values : we get more elements because we mesh parts of the eye that have not been meshed previously. Due
to these new parts, the time to mesh is longer with v9. But we can notice that the geometry takes less time with v9.

The chapters A.3 and A.4 present tools provided by Feel++ to display the geometry with Paraview, or to work on
many cores in parralel.
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10 837 077 54.98 127.04 43 544
5 836 800 55.12 127.01 43 528
3 837 261 54.81 125.80 43 552
2 840 261 52.76 128.37 43 704
1 871 499 54.96 132.88 45 308
0.5 1 076 095 53.86 163.83 55 916

Table 2.2: Computational times and data for different hsize_eye
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0.05 1 871 499 60.20 149.23 210.99
0.025 0.5 1 224 313 60.50 209.19 271.25
0.1 2 807 396 59.53 142.75 203.80
1 1 831 061 59.22 147.36 208.14

0.05 0.25 2 816 511 60.28 572.80 634.51

Table 2.3: Computational times and data for different h size
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3.Verification and validation of the geometry

In this chapter we will focus on some tests with Feel++, to figure that the geometry created in chapter 2 is correct.
To begin with, we won’t simulate something physical, but we will simply solve the Laplacian equation :{

∆u = f in Ω
u = g on ∂Ω (3.0.1)

In a second time, in section 3.3, we will study a physical problem of heat transfer on the 3D geometry, and compare
the results to a 2D case taken from the literature [10].

3.1 Tests with functions in the space
The theory of finite elements tells that if the solution u lives in the same space as the one used for the resolution,

then the error on this solution is 0 (here, we will find the machine 0, which is around 1e-14).
The application feelpp_qs_laplacian_3d allows to make those tests : we give to the application the desired

solution, and it calculates the right member of the equation (f) and the boundary conditions (g), then calculates the
norm of the error. The command to run it is :

mpirun -np 12 ./feelpp_qs_laplacian_3d --config-file exact.cfg --checker.solution "f(x,y,z):x:y:
↪→z" --case.discretization P1 --ksp-monitor 1 --pc-type gamg --ksp-rtol 1e-13

we can set f, and the discretization space (P1, P2, P3).
The following table gathers the results for different inputs. Note that the higher we take the order of the discretization

space, the more expensive calculation will be. To represent it, we also plot the time of execution1. All those tests are
made with the default values for the mesh, see section 2.5.

Solution Space ‖u− uh‖L2 ‖u− uh‖H1 time (s)
x P1 4.723849e-14 2.238452e-13 12.22461

x2 + y2 P2 3.579756e-14 5.538407e-13 31.94711
x3 + y2 P3 6.243324e-14 2.256068e-12 134.3919

sin(xy2) + z P1 93.44523 17.33398 10.45481
sin(xy2) + z P2 47.70873 9.805593 31.57608
sin(xy2) + z P3 33.87173 7.149038 138.2360

Table 3.1: Results

The three last lines show that with higher polynomial order, we get a better solution, even if the cost to obtain it is
higher.

3.2 Convergence test
In this section, we focus on the convergence of the method on our geometry : we generate the mesh with different

parameters and look at the error on the solution. To generate them, we use the same value for hsize_eye and
hsize_lamina. For a small value of h, this leads to a gigantic mesh : it contains more than 16 million tetrahedrons !
The table 3.2 gather different characteristics of each mesh. Because of the complex geometry, we cannot have a uniform
geometry. This is why when we take h_size twice smaller, the value of hmax may not be divided by 2.

This first test of convergence is made with the solution f(x, y, z) = sin(xy2) + z, which can have great fluctuation.
The plot of the errors is not shown here, but we can see that there is no difference in the order of convergence between
the two orders. The order of convergence is about 1.5 in norm L2, and 1 for the norm H1, which doesn’t correspond to
the theoretical values. This can be due to the quadrature-order which is not high enough with this function f : the
quadrature error dominates the global error.

We are going to do the same test, with a simpler function f(x, y, z) = cos(πx) sin(πy) cos(πz), with an higher
quadtrature order (for that we had to add a new option to the feelpp_qs_laplacian_3d program : --quad-order).

1this time corresponds to the whole Feel++ execution time, which includes the load of the mesh, the assembly of the matrix, and the
calculation of errors
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1 705 012 124 221 960 207 2.61 1.32 · 10−3 0.29
0.5 879 394 156 297 1 204 622 1.42 1.19 · 10−3 0.37
0.25 2 458 290 435 787 3 368 297 1.10 1.23 · 10−3 0.36
0.2 5 014 580 879 444 6 831 402 0.82 1.21 · 10−3 0.29
0.125 16 781 882 2 909 576 22 742 810 0.56 1.22 · 10−3 0.20

Table 3.2: Description of the different meshes generated

The results of convergence is given in figure 3.1. For the plots, we add to remove the results obtained with the coarser
meshes, which are not thin enough to give a proper order of convergence.
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Figure 3.1: Convergence of the errors, with f(x, y, z) = cos(πx) sin(πy) cos(πz)

3.3 Heat transfer
We are going to focus on the heat transfer in the eye. This work is a follow-up of what my colleagues Sarra and

Hannane made during their 3rd semester project [9]. They studied heat transfer within the eye on a 2D geometry, here
we will use our three-dimensional geometry.

3.3.1 Mathematic model
We focus on the heat flow, which is described by the following equation.

ρiCp,i
∂Ti
∂t

= ∇ · (ki∇Ti) (3.3.1)

where :

• i is the volume index (Cornea, VitreousHumor...),

• Ti [K] is the temperature in the volume i,

• t [s] is the time. In a first approach, we will consider a stationnary state, so ∂Ti
∂t = 0,

• ki [Wm−1K−1] is the thermal conductivity, ρi [kgm−3] is the density and Cp,i [J kg−1K−1] is the specific heat.
All the values used for the differents volumes of the geometry are given in table 3.3, they are taken from [10].
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Markers k
[Wm−1K−1]

ρ
[kgm−3]

Cp
[J kg−1K−1]

Cornea 0.58 1050 4178
Sclera 1.0042 1050 3180

AqueousHumor 0.28 996 3997
Lens 0.4 1000 3000

VitreousHumor 0.603 1100 4178
Iris, Lamina... † 1.0042 1050 3180

Table 3.3: Parameters for the simulation

Parameter Value
hbl 65 Wm−2K−1

hamb 10 Wm−2K−1

Tamb 298 K
Tbl 310 K
E 40 Wm−2

σ 5.67× 10−8 Wm−2K−4

ε 0.975

Table 3.4: Parameters for boundary conditions

Remark 3.1 (†). All the other volumes of the eye are considered to form one only part for this simulation.

Here are the boundary condition set for the simulation :

• Neumann condition on the faces of the eye in contact with the external air :

− k∂T
∂n

= hamb(T − Tamb) + σε(T 4 − T 4
amb) + E (3.3.2)

This condition stands on the marker Cornea_externalBC. Notice that the boundary condition is not linear,
because of radiative heat transfer.

• Robin condition on the external faces of the eye, but inside the human body :

− k∂T
∂n

= hbl(T − Tbl) (3.3.3)

This condition stands on the marker Sclera_externalBC.

The quantity T [K] is the temperature, h [Wm−2K−1] is the convection coefficient. The subscript amb stands
for ambiant, and bl for blood. Finally, E [Wm−2] is the evaporation rate, σ [Wm−2K−4] is the Stefan–Boltzmann
constant, and ε is the emmissivity of the cornea (and has no dimension). Those conditions, and the values used, see
table 3.4, are also taken from [10].

3.3.2 Static results
In the first part, we are going to see the results obtained for a static simulation : the term in front of the time

derivation in the heat equation is null. The configuration files corresponding to this simulation can be found on the
Github repository, the cfg file and the json file.

To run the simulation, we use this command (the number of cores used corresponds to the number of parts in which
we partitioned the mesh).

mpirun -np 12 feelpp_toolbox_coefficientformpdes --config-file eye.cfg

The results obtained are shown in figure 3.2.
With Feel++, we can take measures on the result. Here we measured the minimal value, the maximum, and the

mean of the temperature on the eye to compare it with what is given in [10, Section 3.3]. This is the left figure in
figure 3.3.

On the stationary case, we find a minimal value on the whole eye of 307.37 K (34.22◦C), while the article found
306.45 K (33.3◦C). For the maximum, we get 309.92 K (36.77◦C), in the article, it is 309.95 K (36.8◦C).
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(a) Full eye (b) Cutted eye

Figure 3.2: Static results

Figure 3.3: Static results
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Figure 3.4: Results of the simulation over 1 minute

3.3.3 Time-dependant results
Now we are focusing on a time-dependant simulation. We have to set initial conditions in the configuration files for

Feel++. On a first attempt, I gave T 0 = Tamb in the cornea and T 0 = Tbl in the other volumes of the eye, but the
problem is that the initial temperature has a discontinuity on the border between the cornea and the rest of the eye.
To avoid this problem, we can use a ramp on boundary conditions : at t = 0 we consider that the outside temperature
is equal to Tbl, and progresively goes to Tamb, using a time smoothstep.

Definition 3.2 (Smoothstep – see this page). Let a, b ∈ R, the function smoothstep is defined by :

smoothstep(t, a, b) =

 a if t 6 a
3t2 − 2t3 if a 6 t 6 b
b if b 6 t

for t ∈ R (3.3.4)

The initial condition is that T = Tbl on the whole eye, and the boundary condition is the same as given in 3.3.2,
substituing Tamb by Ttrans(t) with

Ttrans(t) = Tbl + smoothstep(t, 0, 10)
10 (Tamb − Tbl) (3.3.5)

The configuration files corresponding to this simulation can be found on Github, the cfg file and the json file.

A video of the evolution of the temperature in the eye from a different point of view is made. This video can be
found on Git lfs, on this link. This time, we can measure the evolution of the minimal and maximal temperature on the
eye. We also made the same measures on a single marker : Cornea, which is the volume in contact with the ambient
air. The evolution of the temperature (the min, the max, and the mean) is plotted on figure 3.4.

These two results give the conclusion that the generated geometry does not have a mesh defect. If this had been
the case, we would have observed abnormal behavior in the results obtained.
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4. Physical modeling

This chapter presents the splitting operator involved in the 3D – 0D coupling, developed in [3, 17]. The example
presented in the next section is taken from [2, section 2.3]. The Feel++ application implementing this coupling is the
toolbox feelpp_toolbox_hdg_coupledpoisson.

As described in section 2.1, the lamina cribosa plays a critical role in the connection between the eye and the optic
nerve.

4.1 Tissue perfusion
We model here the lamina cribosa (LC ) as a porous material where blood vessels are viewed as pores in a solid

matrix. We denote by Ω ⊂ R3 the spatial domain of the LC, which is schematized as a cylinder with a hole at his
center. This leads to the time-dependant problem :

j + kp∇p = 0 in Ω×]0, T [ (4.1.1a)
∂p

∂t
+∇ · j = f in Ω×]0, T [ (4.1.1b)

where p is the pressure, j is the discharge velocity (blood perfusion velocity) and kp is the permeability. We note that
this is the Darcy problem introduced in equation (6.1.1), with K = kpI (identity matrix).

We couple the 3D-model (4.1.1) for the LC with a simplified 0D-model for the blood circulation in the posterior
ciliary arteries of the lamina. The whole model is presented in figure 4.1.

We denote by Π = [Π1, Π2, Π3]T the vector of unknown pressures at the circuit nodes. The dynamic of the 0D
circuite is described by :

dΠ
dt = AΠ + s+ b (4.1.1c)

where A is a matrix representing the vascular resistances and compliances. For our model, we have :

A =


− 1
C1R12

1
C1R12

0
1

C1R12
− 1
C2

(
1
R12

+ 1
R23

)
1

C2R23

0 1
C3R23

− 1
C3

(
1
R23

+ 1
Rout

)
 (4.1.1d)

furthermore we have :

Σbottom
Cb C2 C3

QI

UI
Rb Π1

R12 Π2
R23 Π3

Rout

Πout

Ω

hlc

rlcrop

Σlateral

Σtop Σhole

Figure 4.1: Coupled system of the LC
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b =

QI0
0

 s =

 0
0

Πout

Rout

 (4.1.1e)

with QI = UI −Π1

R1
, where UI is the unknown pressure on Σlateral, which is spatially uniform : QI and UI are only

time-dependant functions.

Remark 4.1. In other documents, the quantity UI may be named pI . To avoid confusion with the potential, we
choose to use the notation UI .

Remark 4.2. Equation (4.1.1c) can be retrieved using the electrical laws :

P0
R P1

Q

(a) Resistor

P0

C
P1

Q

(b) Capacitor

Figure 4.2: Electrical elements

• For a linear resistor with a resistance R (see figure 4.2(a)), the current Q through it is proprotionnal to the
voltage difference on the two poles : Q = P0 − P1

R
.

• For a linear capacitor, we have this formula : Q = C
d(P0 − P1)

dt .

• The conservative law, or Kirchhoff’s law, tells that on a node of the circuit, the sum of inflow currents equals to
the sum of outflow currents.

Using those laws on the three nodes Πi of the circuit, we find the equation (4.1.1c) given above. •

Because of the coupling conditions on Σlateral, to ensure the continuity of mass and pressure, we have :∫
Σlateral

ĵ · n = QI p is constant on Σlateral (4.1.1f)

UI = p on Σlateral (4.1.1g)

Finally, we add those boundary conditions :

p = phole on Σhole (4.1.1h)
j · n = 0 on Σtop ∪Σbottom (4.1.1i)

where phole is known. We also have those initial conditions :

p(x, t = 0) = p0(x) in Ω (4.1.1j)
Π(t = 0) = Π0 (4.1.1k)

In the following, the borders of the domain Ω will be named according to the condition on these borders (ΓD for
Dirichlet, ΓN for Neumann and ΓI for the IBC).

More generally, equation (4.1.1c) can be written dy
dt = A(y, t)y + r(y, t), with r(y, t) = s(y, t) +b(y, t). The second

term r is composed by

• sources and sinks within the circuit, the quantity s

• the contribution due to the coupling with the PDE domain, the quantity b.
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This 3D – 0D coupling introduces the instabilities of numerical methods and computational cost. We will use an
operator splitting method. This is a time-splitting method that doesn’t care about potential issues raised by spatial
multiscale. The HDG formulation (see chapter 6) supports the integral boundary condition (4.1.1f) without any
sub-iteration. The strategy that we will describe in chapter 7 allows us to compute at the same time the pressure on
that boundary, obtaining a natural coupling between the 3D model and the 0D.

4.2 Feel++ application feelpp_toolbox_hdg_coupledpoisson

This section presents the way this two-steps algorithm is implemented in Feel++. The content of the code is taken
from the file coupling.hpp. The main idea of the program is to start with objects given by the class MixedPoisson
which solve a problem with the HDG method, then add to the matrix lines and columns corresponding to the terms
due to coupling.

In the following, we will consider that there is only one interface condition in the model, as is the case on the model
presented earlier. The reasoning would be the same with more conditions. We add to the finite elements matrix of
the system equation (7.1.1) one line / column for the unknown UI due to boundary condition (4.1.1g), and one line /
column for the potential Π1. In the following, to be consistent with the code, we will call Y this value.

In chapter 7, there is the details of the calculation of the variational problem. We simply insert it here :

(
K−1j,v

)
Ω
− (p,∇ · v)Ω + 〈p̂,v · n〉Γint∪Γ\ΓI + 〈UI ,v · n〉ΓI = 0 (4.2.1)

(∇ · j, w)Ω + (∂tp, w)Ω + 〈τp, w〉Γint∪Γ\ΓI − 〈τ p̂, w〉Γint∪Γ\ΓI − 〈τUI , w〉ΓI = (f, w)Ω (4.2.2)
〈j · n, µ1〉Γint∪ΓN + 〈τp, µ1〉Γint∪ΓN − 〈τ p̂, µ1〉Γint∪ΓN = 〈gN , µ1〉ΓN (4.2.3)

〈j · n, µ2〉ΓI + 〈τp, µ2〉ΓI − 〈τUI , µ2〉ΓI −
1
|ΓI |

〈
1
Rb
UI , µ2

〉
ΓI

+ 1
|ΓI |

〈
1
Rb
Y, µ2

〉
ΓI

= 0 (4.2.4)

1
|ΓI |

〈
Cb

Y

∆t
, µ3

〉
ΓI

−

(
1
|ΓI |

〈
1
Rb
UI , µ3

〉
ΓI

− 1
|ΓI |

〈
1
Rb
Y, µ3

〉
ΓI

)
︸ ︷︷ ︸

〈b,µ3〉ΓI=〈QI ,µ3〉ΓI

= 1
|ΓI |

〈
Cb
Y old

∆t
, µ3

〉
ΓI

(4.2.5/A)

1
|ΓI |

〈
Cb

Y

∆t
, µ3

〉
ΓI

−
(
〈j · n, µ3〉ΓI + 〈τp, µ3〉ΓI − 〈τUI , µ3〉ΓI

)︸ ︷︷ ︸
〈b,µ3〉ΓI=〈QI ,µ3〉ΓI

= 1
|ΓI |

〈
Cb
Y old

∆t
, µ3

〉
ΓI

(4.2.5/B)

We represented on figure 4.3 the finite elements matrix, with its different blocks. The blue-framed parts of the matrix

correspond to the added lines / columns due to the coupling. From equation (4.1.1f), we have
∫
ΓI

ĵ ·n = QI = ÛI − Ŷ
Rb

which can be rewritten ∫
ΓI

ĵ · n− ÛI − Ŷ
Rb

= 0 (4.2.6)

That is why in the matrix we have the red terms added in the line corresponding to ÛI . A more detailed matrix for
this problem is given in figure 7.1.



· · · · · · · · · x

· · · · · · · · · x

· · · · · · · · · 0
x x 0 x− 1

R1
1
R1

0 0 0 0 1
∆t





j

p

p̂

ÛI
Ŷ


=



Fj

Fp

Fp̂

0
yn

∆t + b



j p p̂ ÛI Ŷ

j

p

p̂

ÛI

Ŷ

Figure 4.3: EF matrix for the step 1 of the coupled problem

The term yn

∆t
depends on the time-discretization chosen. More details about the time discretization are given below.

To get the right term in Feel++, we use the function polyDeriv, which returns the right-hand side of the time scheme.
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With Feel++, the EF matrix is represented by a blockform2 named bbf the i-th « line » and the j-th « column »
of the EF matrix can be reached with the command bbf( i_c, j_c ). Mode presicely, for the lines / columns added
because of the coupling can be reached with the command bbd( 3_c, 3_c, i, j ) with i and j the index of the line
/ column (from 0). This is the same for the right-hand side, which is a blockform1.

Here are the indices of the blockform2. We set j=i+1.
0_c,0_c 0_c,1_c 0_c,2_c 0_c,3_c,0,i 0_c,3_c,0,j
1_c,0_c 1_c,1_c 1_c,2_c 1_c,3_c,1,i 1_c,3_c,1,j
2_c,0_c 2_c,1_c 2_c,2_c 2_c,3_c,2,i 2_c,3_c,2,j

3_c,0_c,i,0 3_c,1_c,i,1 3_c,2_c,i,2 3_c,3_c,i,i 3_c,3_c,i,j
3_c,0_c,j,0 3_c,1_c,j,1 3_c,2_c,j,2 3_c,3_c,j,i 3_c,3_c,j,j

 (4.2.7)

The application generated is feelpp_toolbox_hdg_coupledpoisson1. When I first tried to use this application
on the test cases given in the repository, the results were erroneous. To seek what is incorrect in the code, I added
functionality to the program : an option to decouple the PDE and the ODE on the first step of the algorithm. See
section 5.1 for more details.

1See documentation http://docs.feelpp.org/toolboxes/0.108/hdg/hdg_coupledpoisson.html
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5. Implementation aspects of the model

5.1 Tests with the application feelpp_toolbox_hdg_coupledpoisson

In the previous section, we described the system for step 1 (see equation (7.1.1)) with and without coupling. The
purpose of this is to test the application with an analytical case.

To ensure that, we added some options to the application coded in the file coupling.hpp :

Name Description Default value Possible values
coupling.mode type of coupling used 1 see below
coupling.QI analytical value of QI 1-linear expression
coupling.Pi1 analytical solution of the ODE (7.1.1c) Π1 1-linear expression

The default values of the options coupling.QI and coupling.Pi1 are the analytical values for the test case 1-linear .
The type of coupling are described in this table :

Mode Description
0 The decoupled system is solved
1 (default) The coupled system is solved, using QI =

∫
ΓI
ĵ · n

2 The coupled system is solved, using QI = UI−Π1
Rb

5.2 Functional Mock-up Interface
The Functional Mock-up Interface (or FMI ) defines a standardized interface to be used in computer simulations.

Many tools can be used to develop FMI, such as the open-source OpenModelica, or the proprietary Dymola. During
the internship, I used Dymola which we bought a license for Cemosis (especially for the ibat project). The next section
presents how Dymola works.

With such software, we create from the FMI a software called Functional Mock-up Unit (or FMU). With Feel++, it
is possible to generate FMU from FMI and simulate the model. With CMake, we can generate the fmu file from the
model mo, adding this line in CMakeLists.txt.

feelpp_add_fmu( test3d0d CLASS test3d0d SRCS test3d0d.mo )

1. Name of the exporter FMU (here test3d0d)

2. Name of the class in the mo files that we want to export (here test3d0d)

3. Files with the code for the model (here test3d0d.mo, we have only one file)

We run the application feelpp_fmi_fmu with the following cfg file to export at each time step the value of Π1.

1 [fmu]
2 filename=$cfgdir/test3d0d.fmu
3 exported-variables=Pi_1.phi
4 time-initial=0
5 solver.time-step=0.1
6 solver.rtol=1e-6

5.3 Model 0D with dymola
To handle Modelica and Dymola, we implement the 0D part of the model described in section 4.1 : the coupling

term is represented here with a constant voltage source UI . The scheme of the model is presented in figure 5.1(a).
To measure the quantities Π1, Π2 and Π3 with Dymola, we can use a PotientialSensor, on the corresponding

nodes. The circuit implemented in Dymola is shown on figure 5.1(b). We can notice that for the signal Πout which
depends on time, we have to create block realExpression to set the value of the signal.
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Figure 5.1: Circuit for Dymola
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There are two ways of implementing a model with dymola. The first one is to use the graphical user interface :
we drag and drop blocks from the left menu to create objects, and we join them with « wires » (as we can see on
figure 5.1(b)). A code is generated in a mo file. Equations come out from all those blocks and connexions, and those
equations are solved when we simulate the model.

The second way to implement a model is to write directly the mo file. For complex models, that can be difficult...
Here is an example of two resistors connected by a wire.

model TwoResistors
Modelica.Electrical.Analog.Basic.Resistor resistor1(R=R1) "resistor"

annotation (Placement(transformation(extent={{-70,30},{-50,50}}))) ;
Modelica.Electrical.Analog.Basic.Resistor resistor12(R=R12)

annotation (Placement(transformation(extent={{-30,30},{-10,50}}))) ;
equation

connect(resistor1.n, resistor12.p) ;
end TwoResistors ;

The n and p elements of Resistor correspond to the negative and positive poles of the electrical component.

Once the model is set, we go in the simulation tab in Dymola to run the simulation. Many parameters can be set,
such as the time of simulation or the number of time steps. After the simulation is run, we can plot many variables :
the attributes of the different elements, such as the potential at each pole (see figure 5.2(a) for the resistor R12) ; or
the quantities measured by sensors. On figure 5.2(b), the values of Πi (for i ∈ {1, 2, 3}) is plotted among time, for
t ∈ [0, 10]. On this figure, we can figure that the node closer to the source Πout has an higher potential.

One interesting feature of the Modelica language is that we can write documentation of the case directly in the
mo file, using HTML language. Furthermore, we can define parameters for the model. When the documentation is
displayed with Dymola, all those parameters are automatically included.

parameter Modelica.SIunits.Resistance R1=1e3 "Resistor 1";
parameter Modelica.SIunits.Capacitance C1=1e-3 "Capacitance 1";

5.4 Linear case
This example has been developped to check the results of the toolbox hdg_coupled_poisson. The files describing

it can be found on Github in toolboxes/hdg/coupledpoisson/test-linear directory1.
This model is very simple : we take a parallelepipedon for the 3D domain and a simple circuit for the 0D model.

The coupled model is shown on figure 5.3.
We set :

• Ω =
{
x = (x, y, z) ∈ R3

∣∣x ∈ [0, H] and y, z ∈ [0, L],
}

• ΓD = Ω ∩ {x = 0}

• ΓI = Ω ∩ {x = H}

• ΓN = Ω ∩ ({y = 0} ∪ {y = L} ∪ {z = 0} ∪ {z = L})

We set p(x, t) = α + βxt for x = (x, y, z) ∈ Ω and t > 0, and K = kI (the identity matrix). So time dependant
Darcy equation (see equation (6.1.1))

1
M

∂p

∂t
+∇ · j = f (5.4.1a)

j + k∇p = 0 (5.4.1b)

gives that :

j = −k

βt0
0

 f = βx (5.4.2)

Let’s calculate the boundary conditions (see equation (6.1.2)) :
1It is possible that this case is changed or deleted in the future, so the links points to the state of the repository at commit b2adc.
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Figure 5.3: Simple 3D - 0D model

• On ΓN , j · n = 0, because n = [0, 0,−1]T , [0, 1, 0]T , [0, 0, 1]T , [0,−1, 0]T depending on the face of ΓN ,

• On ΓG, p = α,

• On ΓI ,
∫
ΓI

j · n =
∫
ΓI

−βt0
0

 ·
1

0
0

 = −L2kβt =: QI ; and p|ΓI = α+ βHt =: UI

Four our test case, we take Rb = 1 Ω and Cb = 1F, to have simpler formulas.
As QI(t) = UI −Π1

Rb
, we get that Π1 = PI −QI = α+ β(H +RbL

2k)t. Using Kirchhoff laws on node Π1, we find
that

Πout = α+ β
[
Ht+ L2kt(Rb −Rout)− CbRout(H +RbL

2k)
]

With these beautiful formulas, we can check that the result of the toolbox corresponds to the theory.

NB : To run 0D model with Feel++, we can use FMI. More détails are given on section 5.2.

On figure 5.4 is represented the potential obtained by the toolbox in front of the theorical value p. the screen shot
has been taken after 20 time steps. We see that there is a manifest difference between the two of them.

Figure 5.4: Comparaison of the potential

So something is uncorrect in the code. We tried to fix it during the internship (see branch test-coupling in the
repository, or the issue 1621), but no correction ahs yet been made.
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Part II

Methods and discretization

In this second part, we will study the methods used to solve the models. A first chapter is dedicated to the
Hybridizable Discontinuous Galerkin (chapter 6), and a second (chapter 7) to an algorithm dealing with the coupling
described in chapter 4 : the time-splitting algorithm
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6. Hybridizable Discontinuous Galerkin

6.1 Darcy equations with IBC
The Darcy equations describe the behavior of a porous medium.

Let Ω an open bounded set of Rd, with d ∈ {2, 3}. We denote by Γ the boundary of Ω, partitioned into three
disjoint subsets : ΓD, ΓN and ΓI . Te problem to solve is : find j ∈ H(div, Ω) and p ∈ L2(Ω) such that

j +K · ∇p = 0 in Ω (6.1.1a)
∇ · j = f in Ω (6.1.1b)

with those boundary conditions :

p = gD on ΓD (6.1.2a)
j · n = gN on ΓN (6.1.2b)∫

ΓI

j · n = Itarget on ΓI (6.1.2c)

p(x, t) = p(t) on ΓI (6.1.2d)

where Itarget is a given constant. The solution p is also constant on ΓI , this property is a consequence of
equation (6.1.2c). Furthermore, f ∈ L2(Ω) and K ∈ (L∞(Ω))n×n is a symmetric matrix, uniformly positive defined
over Ω. It represents the permeability tensor.

The condition 6.1.2b is called integral boundary condition and ensures the coupling betwen models. See figure 6.1(a)
for an example of geometry for this problem.

Notation 6.1. Let p, q ∈ L2(D), we write (p, q)D =
∫
D
pq if D ⊂ Rd, and 〈p, q〉D =

∫
D
pq if D ⊂ Rd−1.

Definition 6.2. We define the following spaces :

• H1/2(Γ ) =
{
ϕ ∈ L2(Γ )

∣∣∃ ∈ H1(Ω), u|Γ = ϕ
}
,

• H
1/2
00 (ΓN ) =

{
ϕ ∈ H1/2(Γ )

∣∣ϕ = 0 on ΓD ∪ ΓI
}

• H(div, Ω) =
{
v ∈ L2(Ω)

∣∣∇ · v ∈ L2(Ω)
}

Let ϕ ∈ H1/2(Ω) such as ϕ|ΓD = 0 and ϕ|ΓI = 1.

Let’s find the variational formulation of the problem (6.1.1 – 6.1.2).
we multiply equation (6.1.1a) by K−1. Let’s take a test function v ∈ H(div, Ω), then we have :

∫
Ω

K−1jv +
∫
Ω

∇pv = 0∫
Ω

K−1jv −
∫
Ω

p∇ · v +
∫
Γ

p̂v · n = 0

after a partial integration. We do the same calculation on equations (6.1.1b) and (6.1.2a). On equation (6.1.2c), we
have for a test function µ ∈ span 〈ϕ〉 ⊕H1/2

00 (ΓN ) :

∫
Γ

j · nµ =
∫
ΓD

j · nµ+
∫
ΓN

j · nµ+
∫
ΓI

j · nµ

= 0 + 〈gN , µ〉ΓN + Itarget|ΓI |−1 〈µ, 1〉ΓI
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Figure 6.1: Example of geometry and mesh for the problem (6.1.1 – 6.1.2)

because of µ|ΓD = 0, equation (6.1.2c), and µ is constant on ΓI .

It leads to this variational problem : find j ∈ H(div, Ω), p ∈ L2(Ω) and p̂ ∈ span 〈ϕ〉 ⊕H1/2
00 (ΓN ), such that for all

v ∈ H(div, Ω), w ∈ L2(Ω) and µ ∈ span 〈ϕ〉 ⊕H1/2
00 (ΓN ), we have

(K−1j,v)Ω − (p,∇ · v)Ω + 〈p̂,v · n〉Γ = 0 (6.1.3a)
(∇ · j, w)Ω = (f, w)Ω (6.1.3b)

〈j · n, µ〉ΓN∪ΓI = 〈gN , µ〉ΓN + Itarget|ΓI |−1 〈µ, 1〉ΓI (6.1.3c)
〈p̂, µ〉ΓD = 〈gD, µ〉ΓD (6.1.3d)

This formulation leads to the following theorem :

Theorem 6.3. Let f ∈ L2(Ω), gD ∈ H1/2(ΓD), gN ∈ L2(ΓN ). The variational problem (6.1.3) has a single solution
(j, p, p̂) ∈ H(div, Ω)× L2(Ω)× span 〈ϕ〉 ⊕H1/2

00 (ΓN ) such as :

−∇ · (K∇p) = f in Ω
p = gD on ΓD

−K∇p · n = gN on ΓN

with p constant on ΓI . Moreover, we have
∫
ΓI

−K∇p · n = Itarget.

The proof of this theorem can be found in [2, Theorem 3.2].

6.2 HDG formulation
The Hybridizable Discontinuous Galerkin (HDG) method is a finite element (FE) method where the space used for

approximating leads to solutions that are not continuous, as opposed to usual FE methods. This leads to a higher
number of degrees of freedom, but as we will see after, this problem will be handled by a special manipulation, the
static condensation. The continuity of the solution on the boundary of elements is weakly imposed.

The content of this section is mostly taken from [2, Section 4].

Definition 6.4. If F is the facet at the intersection of two adjecents elements K1 and K2, we define the jump of the
normal trace of the vector-valued function q ∈ H(div,K) across F by :

JqKF = qK1 · n∂K1 |F + qK2 · n∂K2 |F (6.2.1)

To apply the HDG method, we need to get a triangulation of the domain Ω. We call Th this triangulation, where h
is the characteristic size, which is the maximum of the diameters of the elements K ∈ Th.

In the following, we will call face of an element the (d− 1)-dimensionnal element of the triangulation (so if d = 2,
we call face what is usually called edge).

Definition 6.5. We call skeleton of the triangulation Th the set of all faces of the elements. The skeleton of Th is
noted Fh. This set is partitionned is sub-sets :
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K1 K2

(a) Discontinuity over the faces

K1 K2

(b) Discontinuity on edges

Figure 6.2: Fuctions over the finite elements spaces

• FΓDh is composed of all faces that belongs to ΓD,

• FΓIh is composed of all faces that belongs to ΓI ,

• FΓNh is composed of all faces that belongs to ΓN ,

• F0
h contains the remaining faces.

The figure 6.1(b) shows an example of such separation.

6.3 Discrete variationnal formulation
Definition 6.6. We introduce these finite element spaces :

• Vh =
∏
K∈Th

V(K),

• Wh =
∏
K∈Th

W (K),

• M̃h =
{
µ ∈ L2(Fh)

∣∣∣µ|F ∈ Pk(F ) ∀F ∈ F0
h ∪ F

ΓN
h , µ|ΓD∪ΓI = 0

}
,

• M∗h =
{
µ ∈ L2(Fh)

∣∣µ|ΓI ∈ R, µ|Fh\ΓI = 0
}
(we have dimM∗h = 1),

• Mh = M∗h ⊕ M̃h
1.

with Vk(K) = (Pk(K))d et Wk(K) = Pk(K)

We can notice that from these definitions, the functions in Vh and Wh are in general discontinuous over faces of
elements as shown on figure 6.2(a). As well as functions in Mh : they are single-valued over faces of elements, but
they are discontinuous on the vertices of the skeleton (see figure 6.2(b)). These functions are « connectors » between
elements.

Definition 6.7. We define the numerical normal flux on ∂K :

ĵ
∂K

K · n∂K = jKh |∂K · n∂K + τ∂K
(
pKh |∂K − p̂h|∂K

)
(6.3.1)

τ∂K > 0 is a stabilisation parameter, that can depend on the face F ∈ ∂K.

The discrete formulation of the problem (6.1.3) is : find jh ∈ Vh, ph ∈Wh and p̂ ∈Mh such that ∀vh ∈ Vh,∀wh ∈
Wh,∀µh ∈Mh :

∑
K∈Th

[(
K−1jKh ,v

K
h

)
K
−
(
pKh ,∇ · vKh

)
K

+
〈
p̂∂Kk ,vKh · n∂K

〉
∂K

]
= 0 (6.3.2a)

∑
K∈Th

[
−
(
jKh ,∇wKh

)
K

+
〈
ĵ
∂K

h · n∂K , wKh
〉
∂K

]
=
∑
K∈Th

(
f, wKh

)
K

(6.3.2b)

∑
K∈Th

〈
ĵ
∂K

h · n∂K , µh
〉
∂K

= 〈gN , µh〉ΓN + Itarget|ΓI |−1 〈µh, 1〉ΓI (6.3.2c)

1the direct sum can be easily checked : if µ ∈ M̃h ∩M∗
h , then on the one hand µ = 0 on ΓI , and on the other hand µ = 0 on Fh \ ΓI , so

µ = 0.
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The quantities jh and ph are the approximations of j and p inside elements K ∈ Th, and p̂h is the approximation
of the trace of p̂h on the faces of Fh.

As we will see in section 6.4 the discrete equations stand inside each K ∈ Th and can be solved on each K to
eliminate jKh and pKh in favor of p̂∂Kh . This is static condensation. Combinant this procedure to the definition of the
numerical normal flux ĵ

∂K

h , we can express ĵ
∂K

h as a function of p̂∂Kk only.

From the remaining equation (equation (6.3.2c)), and using properties of µ, we have :

1. If F ∈ ∂K ∈ F0
h, then

〈
ĵ
∂K
· n, µh

〉
Fleft

=
〈
ĵ
∂K
· n, µh

〉
Fright

, so

〈
JĵhK, µh

〉
F

= 0 ∀F ∈ F0
h,∀µ ∈Mh (6.3.3)

This equation ensures weakly the continuity through the inners faces.

2. Si F ∈ ∂K ∈ F0
h, 〈

ĵ
∂K

h · n∂K , µh
〉
F

= 〈gN , µ〉F (6.3.4)

weakly ensures Neumann conditions.

3. It remains one equation 〈
ĵ
∂K

h · n∂K , µh
〉
F

= Itarget|ΓI |−1 〈µh, 1〉ΓI (6.3.5)

weakly ensures the IBC condition.

Theorem 6.8. The discrete problem (6.3.1 – 6.3.2) has a unique solution.

The proof is given in [2, Theorem 4.2].

6.4 Static condensation
As said earlier, we will study how the system (6.3.1 – 6.3.2) can be statically condensed, which is recast in terms of

a global linear system where only the trace of the solution on the boundaries of the elements of the mesh is used.

As Mh = M̃h ⊕M∗h , we can split the trace :

p̂h = λ1,h + λ2,h (6.4.1)

with : λ1,h = p̂h|M̃h
et λ2,h = p̂h|M∗

h
.

The problem (6.3.1 – 6.3.2) can be rewritten :

∑
K∈Th

[(
K−1jKh ,v

K
h

)
K
−
(
pKh ,∇ · vKh

)
K

+
〈
λ1,h,v

K
h · n∂K

〉
∂K

+
〈
λ2,h,v

K
h · n∂K

〉
∂K

]
= 0 (6.4.2a)

∑
K∈Th

[(
∇ · jKh , wKh

)
K

+
〈
τ∂Kp

K
h , w

K
h

〉
∂K
−
〈
τ∂Kλ1,h, w

K
h

〉
∂K
−
〈
τ∂Kλ2,h, w

K
h

〉
∂K

]†
=
∑
K∈Th

(
f, wKh

)
K

(6.4.2b)

∑
K∈Th

[〈
jKh · n∂K , µ1,h

〉
∂K

+
〈
τ∂Kp

K
h , µ1,h

〉
∂K
− 〈τ∂Kλ1,h, µ1,h〉∂K

]
= 〈gN , µ1,h〉ΓN (6.4.2c)

∑
K∈Th

[〈
jKh · n∂K , µ2,h

〉
∂K

+
〈
τ∂Kp

K
h , µ2,h

〉
∂K
− 〈τ∂Kλ2,h, µ2,h〉∂K

]
= Itarget|ΓI |−1 〈µ2,h, 1〉ΓI (6.4.2d)

for (vh, wh, µ1,h, µ2,h) ∈ Vh ×Wh × M̃h ×M∗h .

Remark 6.9 (†). To get this term, we have to make a partial integration. From equation (6.3.2b) :

−
(
jKh ,∇wKh

)
K

+
〈
ĵ
∂K

h · n∂K , wKh
〉
∂K

=
(
jKh ,∇wKh

)
K
−
〈
wKh , j

K
h |∂K · n∂K

〉
∂K

+
〈
jKh |∂K · n∂K + τ∂K

(
pKh |∂K − p̂h|∂K

)
, wKh

〉
∂K

=
(
jKh ,∇wKh

)
K
−
〈
jKh |∂K · n∂K , wKh

〉
∂K

+
〈
jKh |∂K · n∂K , wKh

〉
∂K

+
〈
τ∂Kp

K
h , w

K
h

〉
∂K
−
〈
τ∂Kλ1,h, w

K
h

〉
∂K
−
〈
τ∂Kλ2,h, w

K
h

〉
∂K
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We can now build the matrix of the system :



(
K−1jKh ,v

K
h

)
K

−
(
pKh ,∇ · vKh

)
K

〈
λ1,h,v

K
h · n∂K

〉
∂K

〈
λ2,h,v

K
h · n∂K

〉
∂K(

∇ · jKh , wKh
)
K

〈
τ∂Kp

K
h , w

K
h

〉
∂K

−
〈
τ∂Kλ1,h, w

K
h

〉
∂K

−
〈
τ∂Kλ2,h, w

K
h

〉
∂K〈

jKh · n∂K , µ1,h

〉
∂K

〈
τ∂Kp

K
h , µ1,h

〉
∂K

−〈τ∂Kλ1,h, µ1,h〉∂K 0

〈
jKh · n∂K , µ2,h

〉
∂K

〈
τ∂Kp

K
h , µ2,h

〉
∂K

0 −〈τ∂Kλ2,h, µ2,h〉∂K


·



J

P

Λ1

Λ2


=



0

(
f, wKh

)
K

0

0


(6.4.3)

There is an abuse of notation : in each cell of the matrix, this is the matrix representing the bilinear form, and not
the bilinear form itself. The vectors J, P, Λ1 and Λ2 contain the degrees of freedom of jh, ph, λ1,h and λ2,h respectively.

Note that in the right-hand side, the values of (6.4.2c,6.4.2d) don’t appear in this formulation. The corresponding
terms are added during the global resolution, see section 6.7.

We define the matrices associated to the bilinear forms :

• AK11 ↔
(
K−1jKh ,v

K
h

)
K

• AK12 ↔
(
pKh ,∇ · vKh

)
K

• AK13 ↔
〈
λ1,h,v

K
h · n∂K

〉
∂K

• AK14 ↔
〈
λ2,h,v

K
h · n∂K

〉
∂K

• AK22 ↔
〈
τ∂Kp

K
h , w

K
h

〉
∂K

• AK23 ↔
〈
τ∂Kλ1,h, w

K
h

〉
∂K

• AK24 ↔
〈
τ∂Kλ2,h, w

K
h

〉
∂K

• AK33 ↔ 〈τ∂Kλ1,h, µ1,h〉∂K
• AK44 ↔ 〈τ∂Kλ2,h, µ2,h〉∂K
• AKf ↔

(
f, wKh

)
K

We also notice that the matrix associated with the bilinear form j, w 7→
(
∇ · jKh , wKh

)
K

is the transpose matrix of
AK12 because the training space of j is the test space of v. The same statement can be made for all the forms below the
diagonal of the matrix. So equation (6.4.3) can be rewritten :

AK11 −AK12 AK13 AK14

(AK12)T AK22 −AK23 −AK24

(AK13)T (AK23)T −AK33 0

(AK14)T (AK24)T 0 −AK44


·



J

P

Λ1

Λ2


=



0

AKF

0

0


(6.4.4)

If we are on an element with a side in ΓI (∂K ∩ ΓI = ∅), the last « column » and the last « row » of the matrix
and Λ2 are empty.

Lets focus on the dimension of those matrices. Let nV , nW , nM the dimensions of V k(K), Wk(K) and Pk(F )
respectively, of K ∈ Th and F ∈ ∂K. Let NF be the number of faces in ∂K ∩ (F0

h ∪ FΓN ). Then we have :

• A11 ∈ RnV ×nV ,

• A12 ∈ RnV ×nW ,

• A11 ∈ RnV ×(NF)nM ,

• A22 ∈ RnW×nW ,

• A23 ∈ RnW×(NF)nM ,

• A33 ∈ R(NF)nM×(NF)nM ,

• AKf ∈ RnW×1,

If ∂K ∩ ΓI 6= ∅, we also have

A14 ∈ RnV ×1 A24 ∈ RnW×1 A44 ∈ R1×1

otherwise, these three matrices are empty.
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6.5 Local solver
We define those two matrices :

AK =
[
AK11 −AK12

(AK12)T AK22

]
BK =

[
AK13 AK14
−AK23 −AK24

]
FK =

[
0
AKF

]
(6.5.1)

From equations (6.3.2a) and (6.3.2b), which hold in the interior of every K ∈ Th, we can solve locally to eliminate
jKh and pKh in favor of λ1,h and λ2,h :

AK
[
jK

pK

]
+BK

[
λ∂K1
λ∂K2

]
=
[

0
AKf

]
(6.5.2)

where jK , pK , λ∂K1 and λ∂K2 are the matrices of the local solutions The solution of this equation is :.[
jK

pK

]
= −(AK)−1BK

[
λ∂K1
λ∂K2

]
+ (AK)−1

[
0
AKf

]
(6.5.3)

We have expressed j and p as a function of the trace.

6.6 Flux operator
Now we define the matrices :

CK =
[
(AK13)T (AK23)T
(AK14)T AK24

]
DK =

[
AK33 0
0 AK44

]
(6.6.1)

Let B the bilinear form induced by the normal flux (see definition 6.7). For (µ1,h, µ2,h) ∈ M̃h ×M∗h , we have :

B(µ1,h, µ2,h) =
〈
jKh |∂K · n∂K + τ∂K

(
pKh |∂K − p̂h|∂K

)
, µ1,h + µ2,h

〉
∂K

=
〈
jKh |∂K · n∂K + τ∂K

(
pKh |∂K − λ1,h|∂K − λ2,h|∂K

)
, µ1,h + µ2,h

〉
∂K

=
〈
jKh |∂K · n∂K + τ∂Kp

K
h |∂K , µ1,h + µ2,h

〉
∂K
− 〈τ∂Kλ1,h|∂K , µ1,h〉∂K

− 〈τ∂Kλ1,h|∂K , µ2,h〉∂K − 〈τ∂Kλ2,h|∂K , µ1,h〉∂K︸ ︷︷ ︸
0 because λ1,h,µ1,h∈M̃h and λ2,h,µ2,h∈M∗h

−〈τ∂Kλ2,h|∂K , µ2,h〉∂K

The matrix representation of this bilinear form is, using equation (6.5.3)

CK
[
jK

pK

]
−DK

[
λ∂K1
λ∂K2

]
= −CK(AK)−1BK

[
λ∂K1
λ∂K2

]
+ CK(AK)−1

[
0
AKf

]
−DK

[
λ∂K1
λ∂K2

]
= EK

f − EK
[
λ∂K1
λ∂K2

]
(6.6.2)

with EK
f = CK(AK)−1FK and EK = CK(AK)−1BK +DK

6.7 Global resolution
We have expressed the numerical normal flux as a function of the trace (represented by λ1,h|∂K and λ2,h|∂K) for all

K ∈ Th. It remains to calculate λ1,h and λ2,h.
To solve globally the problem, we form :

• all the EK in a global matrix H,

• all the vectors EK
F in a global vector F ,

• a vector GN which contains 〈gN , µ1,h〉ΓN for the degrees of freedom corresponding to Neumann faces, and 0
elsewhere,

• a vector GI which contains only 0, excepted for the degrees of freedom associated to the faces of FΓIh , with this
value Itarget|ΓI |−1 〈µ2,h, 1〉ΓI .
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Hp̂ = F +GN +GI (6.7.1)

The Dirichlet boundary condition p = 0 on ΓD is assured by the fact that p̂h = λ1,h + λ2,h.

6.8 Implemantation in Feel++
To simulate with Feel++, we need to split the mesh : one part corresponding to locations where we have IBC, and

the other part containing the remaining. The code to get this is given in listing 3.

1 // Th(Ω)
2 auto mesh = loadMesh( _mesh = new Mesh<Simplex<d>> );
3 // filter to retrieve the complement of ΓI in Fh
4 auto complement_integral_bdy = complement( faces( mesh ),
5 [& mesh ]( auto const & e ) {
6 if ( e.hasMarker() && e.marker().matches( mesh->markerName("Ibc*") ))
7 return true;
8 return false;
9 });

10 // Fh \ FΓIh
11 auto face_mesh = createSubmesh( mesh, complement_integral_bdy );
12 // FΓIh
13 auto ibc_mesh = createSubmesh( mesh, markedfaces(mesh ,"Ibc*" ));

Listing 3: Construction of Fh and Fh \ FΓIh

Then we need to construct the approximation spaces Vh, WH , M̃h and M∗h . It is possible in the code to use as
many IBC as we want, so the product space is :

Xh = Vh ×WH × M̃h × (M∗h)n

According to what is given in definition 6.6, if we denote by OrderP the degree of the polynomials (named k
previously), the three first spaces have an ordre OrderP, while each IBC sapce has an order of 0 (constant functions
are equivalent to polynomials of degree 0).

1 Vh_ptr_t Vh = Pdhv<OrderP>( _mesh = mesh );
2 Wh_ptr_t Wh = Pdh<OrderP>( mesh );
3 Mh_ptr_t Mh = Pdh<OrderP>( face_mesh );
4 // only one degree of freedom
5 Ch_ptr_t Ch = Pch<0>( ibc_mesh );
6 // nb_ibc = number of IBC conditions
7 auto ibcSpaces = product ( nb_ibc , Ch );
8 auto Xh = product( Vh, Wh, Mh, ibcSpaces );

Listing 4: Construction of approximation spaces

The objects used to solve the problem are the blockform1 and blockform2 :
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1 auto a = blockform2( Xh );
2 auto rhs = blockform1( Xh );
3 ...
4 // Assembling the right hand side
5 rhs( 1_c ) += integrate( _range = elements( mesh ), _expr = -f*id(w) );
6 ...
7 // Assembling the main matrix
8 // (λu, v)K
9 a( 0_c, 0_c ) += integrate( _range = elements( mesh ),

10 _expr =( trans( lambda*idt(u) )* id(v)) );
11 ...
12 //

〈
p̂h,v

K
h · n∂K

〉
13 a( 0_c , 2_c ) += integrate( _range = internalfaces( mesh ),
14 _expr =( idt(phat) * ( leftface(trans(id(v)) * N())
15 + rightface( trans(id(v)) * N()))) );

Listing 5: Construction of the matrix

The elements 0_c, 1_c. . . correspond to the index of the test and tiral spaces in Xh. So the part of the blockform2
corresponding to the matrix A11 is a( 0_c, 0_c ).

Finally, the code to solve the system and get the solution is given in listing 6.

1 auto U = Xh.element();
2

3 // static condensation is done during the solve
4 a.solve( _solution = U, _rhs = rhs , _name = "hdg" );
5

6 // get back values on each component
7 auto up = U( 0_c ); // element of Vh

8 auto pp = U( 1_c ); // element of Wh

9 auto phat = U( 2_c ); // element of M̃h

10 auto ip = U( 3_c, 0 ); // element of M∗h

Listing 6: Solve the system and get solutions

Some tests have been implemented with Feel++, see the article [2]. Convergence tests with analytical solutions
have been performed in section 5.3, giving the expected results. The tissues perfusion case (see section 4.1) has also
been implemented, using the splitting algorithm (see next section), but we didn’t manage to run this case in the actual
state of the code of Feel++.
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7. Time-splitting algorithm

We recall here the equations given by the system (4.1.1) for the model presented in figure 4.1.

j + kp∇p = 0 in Ω×]0, T [ (7.0.1a)
∂p

∂t
+∇ · j = f in Ω×]0, T [ (7.0.1b)

where p is the pressure, j is the discharge velocity (blood perfusion velocity) and kp is the permeability.
We denote by Π = [Π1, Π2, Π3]T the vector of unknown pressures at the circuit nodes. The dynamic of the 0D

circuite is described by :

dΠ
dt = AΠ + s+ b (7.0.1c)

where A is a matrix representing the vascular resistances and compliances. Moreover, we have the interfaces
conditions : ∫

Σlateral

ĵ · n = QI p is constant on Σlateral (7.0.1d)

UI = p on Σlateral (7.0.1e)
and the boundary conditions :

p = phole on Σhole (7.0.1f)
j · n = 0 on Σtop ∪Σbottom (7.0.1g)

where phole is known. We also have those initial conditions :

p(x, t = 0) = p0(x) in Ω (7.0.1h)
Π(t = 0) = Π0 (7.0.1i)

7.1 Discretisation
To solve the 3D – 0D coupled system (7.0.1), we begin by performing a semi-discretization in time, in order to

maintian the flexibility to apply the HDG method in this time-dependant problem. We introduce tn = n∆t for n > 0,
and for the quantity ϕ, we denote by ϕn the value of ϕ(tn).

Given pn and Πn for n > 0, to advance from tn to tn+1, we solve those two steps :

Step 1. Find j, p and Π such that :

j + kp∇p = 0 in Ω×]tn, tn+1[ (7.1.1a)
∂p

∂t
+∇ · j = f in Ω×]tn, tn+1[ (7.1.1b)

dΠ
dt = b in Ω×]tn, tn+1[ (7.1.1c)

with the boundary conditions

p = phole on Σhole j · n = 0 on Σtop ∪Σbottom, (7.1.2)

the interface conditions∫
Σlateral

ĵ · n = QI p is constant on Σlateral UI = p on Σlateral, (7.1.3)

and the initial conditions p(tn) = pn, Π(tn) = Πn. Then we set pn+ 1
2 = p(tn+1), Πn+ 1

2 = Π(tn+1) and
jn+ 1

2 = j(tn+1).
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Step 2. Find p and Π such that :

∂p

∂t
= 0 in Ω×]tn, tn+1[ (7.1.4a)

dΠ
dt = AΠ + s in ]t, tn+1[ (7.1.4b)

with the initial conditions p(tn) = pn+ 1
2 and Π(tn) = Πn+ 1

2 . Then we set pn+1 = p(tn+1) (which equals to
pn+ 1

2 ), Πn+1 = Π(tn+1) and jn+1 = j(tn+1) (which is jn+ 1
2 ).

We see that the problem (equation (7.1.1)) described in step 1 is a Darcy elliptic problem with IBC, as described in
equation (6.1.1). The problem (7.1.4) is an ODEs system describing the nonlinear 0D circuit.

7.2 Variational problem for step 1
We recall here the variational formulation given previously in chapter 6.

(
K−1j,v

)
Th
− (p,∇ · v)Th + 〈p̂,v · n〉∂Th = 0 (7.2.1a)

(∇ · j, w)Th + (∂tp, w)Th + 〈τp, w〉∂Th − 〈τ p̂, w〉∂Th = (f, w)Th (7.2.1b)〈
ĵ · n, µ

〉
∂Th

= 〈gN , µ〉ΓN (7.2.1c)

Then we split the space. We denote by Γint the interior faces of the triangulation. Because p = UI on ΓI and
ĵ = j + τ(p− p̂), it gives these equations :

(
K−1j,v

)
Ω
− (p,∇ · v)Ω + 〈p̂,v · n〉Γint∪Γ\ΓI + 〈UI ,v · n〉ΓI = 0 (7.2.2a)

(∇ · j, w)Ω + (∂tp, w)Ω + 〈τp, w〉Γint∪Γ\ΓI − 〈τ p̂, w〉Γint∪Γ\ΓI −〈τUI , w〉ΓI = (f, w)Ω (7.2.2b)
〈j · n, µ1〉Γint∪ΓN + 〈τp, µ1〉Γint∪ΓN − 〈τ p̂, µ1〉Γint∪ΓN = 〈gN , µ1〉ΓN (7.2.2c)

Furthermore, the interface condition (4.1.1f) with the electrical formula given in remark 4.2 give :

∫
ΓI

ĵ · n−
(
UI − Y
∆t

)
= 0〈

ĵ · n, µ2

〉
ΓI
− 1
|ΓI |

〈
1
Rb
UI , µ2

〉
ΓI

+ 1
|ΓI |

〈
1
Rb
Y, µ2

〉
ΓI

= 0

as ĵ = j + τ(p− p̂), this leads to this equation :

〈j · n, µ2〉ΓI + 〈τp, µ2〉ΓI − 〈τUI , µ2〉ΓI −
1
|ΓI |

〈
1
Rb
UI , µ2

〉
ΓI

+ 1
|ΓI |

〈
1
Rb
Y, µ2

〉
ΓI

= 0 (7.2.2d)

Now, if we take the ODE from step 1 equation (7.1.1c) and apply the same reasoning. This gives the following
equation :

1
|ΓI |

〈
Cb

Y

∆t
, µ3

〉
ΓI

−

(
1
|ΓI |

〈
1
Rb
UI , µ3

〉
ΓI

− 1
|ΓI |

〈
1
Rb
Y, µ3

〉
ΓI

)
︸ ︷︷ ︸

〈b,µ3〉ΓI=〈QI ,µ3〉ΓI

= 1
|ΓI |

〈
Cb
Y old

∆t
, µ3

〉
ΓI

(7.2.2e/A)

We could also use the formula QI =
∫
ΓI

ĵ · n in equation (7.1.1c). This leads to this equation :

1
|ΓI |

〈
Cb

Y

∆t
, µ3

〉
ΓI

−
(
〈j · n, µ3〉ΓI + 〈τp, µ3〉ΓI − 〈τUI , µ3〉ΓI

)︸ ︷︷ ︸
〈b,µ3〉ΓI=〈QI ,µ3〉ΓI

= 1
|ΓI |

〈
Cb
Y old

∆t
, µ3

〉
ΓI

(7.2.2e/B)

The test function µ1 lives in M̃h (see chapter 6), while µ2 and µ3 are funciton of M∗h (with is isomorphic to R).
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Remark 7.1. Here, we used the first order time approximation dY
dt (t) ≈ Y − Y old

∆t
. We could use another discretization,

the code in Feel++ automatically deals with it, using Backward differencing formula.

The variational problem for step 1 is given by equation (7.2.2), where (j, p, p̂, UI , Y ) ∈ Vh ×Wh ×Mh ×R×R are
the trial functions, and (v, w, µ1, µ2, µ3) ∈ Vh ×Wh ×Mh × R× R are the test functions.

In figure 7.1 is represented the finite elements matrix from the system of equations (7.2.2). The three first lines
correspond to the 3D problem, which is implemented in Feel++ in the class MixedPoisson. Two matrices are given,
depending on what formula for QI is used. The highlighted terms correspond to the contribution of the coupling. On
the further tests, we will try to uncouple the system : those terms will land on the right-hand side of the equation,
with their analytical values.



(
K−1j,v

)
Ω

(−p,∇ · v)Ω 〈p̂,v · n〉Γint∪Γ\ΓI 〈UI ,v · n〉ΓI
(∇ · j, w)Ω (∂tp, w)Ω + 〈τp, w〉Γint∪Γ\ΓI −〈τ p̂, w〉Γint∪Γ\ΓI −〈τUI , w〉ΓI

〈j · n, µ1〉Γint∪ΓN 〈τp, µ1〉Γint∪ΓN −〈τ p̂, µ1〉Γint∪ΓN
〈j · n, µ2〉ΓI 〈τp, µ2〉ΓI −〈τUI , µ2〉ΓI −

〈
1

|ΓI |RbUI , µ2

〉
ΓI

〈
1

|ΓI |RbY, µ2

〉
ΓI

−〈j · n, µ3〉ΓI −〈τp, µ3〉ΓI 〈τUI , µ3〉ΓI
〈
Cb
|ΓI |

Y
∆t , µ3

〉
ΓI


(a) Using the formula QI =

∫
ΓI
ĵ · n (coupling.mode=1)



(
K−1j,v

)
Ω

(−p,∇ · v)Ω 〈p̂,v · n〉Γint∪Γ\ΓI 〈UI ,v · n〉ΓI
(∇ · j, w)Ω (∂tp, w)Ω + 〈τp, w〉Γint∪Γ\ΓI −〈τ p̂, w〉Γint∪Γ\ΓI −〈τUI , w〉ΓI

〈j · n, µ1〉Γint∪ΓN 〈τp, µ1〉Γint∪ΓN −〈τ p̂, µ1〉Γint∪ΓN
〈j · n, µ2〉ΓI 〈τp, µ2〉ΓI −〈τUI , µ2〉ΓI −

〈
1

|ΓI |RbUI , µ2

〉
ΓI

〈
1

|ΓI |RbY, µ2

〉
ΓI

−
〈

1
|ΓI |RbUI , µ3

〉
ΓI

〈
Cb
|ΓI |

Y
∆t + 1

|ΓI |RbY, µ3

〉
ΓI


(b) Using the formula QI =

UI − Y
Rb

(coupling.mode=2)

Figure 7.1: FE matrix for step 1

Now, let’s look at the right-hand side. It is given in figure 7.2, with on the one hand the case where the coupling is
enabled, and on the other hand when it is disabled.



Fj
Fp
F
p̂

0

1
|ΓI |

〈
Cb
Y old

∆t
, µ3

〉
ΓI


(a) with coupling (coupling.mode={1,2})



Fj
Fp
F
p̂

− 1
|ΓI |

〈
Y exact

|ΓI |
, µ2

〉
ΓI

1
|ΓI |

〈
Cb
Y old

∆t
, µ3

〉
ΓI

+ 1
|ΓI |
〈Qexact

I , µ3〉ΓI


(b) w/o coupling (coupling.mode=0)

Figure 7.2: Right-hand size for the FE problem
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Part III

Reduced Order Methods

This part deals with the reduced basis method. The chapter 8 will present the theory and the methods, while
chapter 9 will show the implementation of those methods. The purpose of this study is to set up an environment
allowing to run sensibility analysis on the parameters of the eye, especially computing Sobol indices. The parameters
can be physiological, such as the intraocular pressure, or geometrical such as the shape of the eye.
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8. Theory and methods

This chapter deals with model order reduction (MOR) and reduced basis method (RB). In the following, N will
denote the finite element problem size (also denoted NN in the programs), and N the reduced size. We have N � N .

In this chapter, we won’t deal with models related to the geometry of the eye, but with a heat problem of a thermal
fin on a CPU. We study this model because we studied it in class during the RB class [12], so we will have a reference
to compare the results. In the end, the code produced during the internship can work with several models.

8.1 Thermal-fin model
We will begin by summarizing the practical work done during the class on a reduced basis [12]. The codes and

reports for the work produced during this class are gathered in this repository.

Ω1 Ω1 Γ 1
extΓ 1

int

Ω2 Ω2 Γ 2
extΓ 2

int

Ω3 Ω3 Γ 3
extΓ 3

int

Ω4 Ω4 Γ 4
extΓ 4

int

Ω0

Γroot

Γ 0
ext

Figure 8.1: Geometry of the thermal fin

We consider the geomtry given in figure 8.1, composed of 5 domains Ωi. On domain Ωi, the temperature ui is
governed by the elliptic PDE :

− ki∆ui = 0 (8.1.1)

Furthermore, we add those boundary conditions :

u0 = ui − (∇u0 · ni) = −ki(∇ui · ni) on Γ int
i for i ∈ {1, 2, 3, 4} (8.1.2)

− (∇u0 · ni) = −1 on Γroot (8.1.3)
−ki (∇ui · ni) = Biui on Γ int

i for i ∈ {0, 1, 2, 3, 4} (8.1.4)

The parameters involved in this problem are the conductivities ki ∈ [0.1, 10] and the Biot number Bi ∈ [0.01, 1].

1. The first problem is a theoretical study of the problem.

2. The second one is the implementation of the reduced basis method, for a time-independent problem.

3. The third problem focuses on a posteriori error estimation, error bound, and a greedy sampling procedure

4. Finally, problem 4 treats a time-dependent problem, with a POD-Greedy sampling procedure.

We took back the code produced during this project and grouped it in a Python module ReducedBasis. The classes
produced are gathered in section 9.1.

Several geometries can be imagined from this one, depending on the parameters : we could the size of the fin, the
number of them, or the number of dimensions of the model. We wrote a Python script, case_generator doing this.
The principle of this script is detailed in section 9.2.
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8.2 Reduced Basis and Empirical Interpolation Method
In the course Calcul Scientifique 3 [12], we studied the reduced basis method (RB) to solve PDE. In this method,

we have a parameter dependant problem to slove, such as : Find u(µ) ∈ V such that ∀v ∈ V

a(u(µ), v) = f(v,µ) (8.2.1a)

and evaluate

s(µ) = l(u(µ),µ) (8.2.1b)

The parameter µ lives in a set D ⊂ Rd. To solve such a problem, we decompose the bilinear form a in a sum :

a(u, v;µ) =
Q∑
q=0

θq(µ)aq(u, v) (8.2.2)

with θq a function of the parameter µ, and aq independant of µ. In some case, this decomposition may not be possible.
To do so, we can use the Empirical Interpolation Method (EIM). The principle of this method is to approximate a
parametrized function by a sum of affine terms :

g(x,µ) ≈ gM (x,µ) =
M∑
m=1

θmg,M (µ)qm(x) (8.2.3)

The content of this section is taken from the thesis of Romain Hild [7, Chapter 3].
Let Ξtrain a subset of D. We denote by gµ the function x 7→ g(x,µ) for a given µ, and gM,µ the function

x 7→ gM (x,µ).

Algorithm 1: EIM approximation
Input: Ξtrain, ε > 0 a tolerance
Choose µ1 ∈ Ξtrain such that gµ1 6= 0

t1 ← arg max
x∈Ω

|gµ1(x)|‡, q1 ←
gµ1(x)
gµ1(t1)

e1 ← ‖gµ1 − g1,µ1‖L2(Ω)
while em−1 > ε do

µm ← arg maxµ∈Ξtrain ‖gµ − gm−1,µ‖
Set Tm−1 ∈ R(m−1)×(m−1) defined by (Tm−1)ij = qj(ti) for i, j ∈ J1,m− 1K, and gm−1

µm
∈ Rm−1 defined by

(gm−1
µm

)i = gµm(ti) for i ∈ J1,m− 1K
Solve Tm−1θg,m−1 = gm−1

µm

rm ← gµm − gm,µm , tm ← arg sup
x∈Ω

|rm(x)|‡, qm(x)← rm(x)
rm(tm)

em ← ‖rm‖L2(Ω), m← m+ 1
end
Output: [q1, · · · , qM ], {t1, · · · , tM}

This algorithme returns a basis q1, · · · , qM of lineary independant functions, interpolation points t1, · · · , tM such
that the matrix Tij = qj(ti) is lower tirangular of size M ×M , with unity diagonal.

To compute gM,µ for all µ ∈ D, we follow these steps :

1. Compute the vector gMµ defined by (gMµ )i = g(ti,µ)

2. Solve the equation of unknown θg,M
Tθg,M = gMµ (8.2.4)

3. The approximation of g(x,µ) is

g(x,µ) ≈
M∑
m=1

θmg,Mqm(x) (8.2.5)

where θmg,M is the m-th coordinate of the vector θg,M

50



CHAPTER 8. THEORY AND METHODS 8.3. A POSTERIORI ERROR ESTIMATION

Example :

a(u, v;µ) =
∫
Ω

g(x;µ)b(u, v;x) dx

Then using the EIM decomposition of g(x,µ) ≈
∑M
m=1 θ

m
g,M we have the following approximation for a :

a(u, v,µ) ≈
M∑
m=1

θmg,M (µ)
∫
Ω

qm(x)b(u, v;x) dx =
M∑
m=1

θmg,M (µ)aq(u, v)

•

With complex operators, it can be difficult to have an analytical expression of the non-affine component. We can
directly calculate the discrete operator. The steps given in algorithm 1 are the same, but instead of using functions
spaces, we act directly on vectors or matrices. We want to have :

T (x,µ) ≈ TM (x,µ) =
M∑
m=1

Θm(µ)Φm(x) (8.2.6)

The main difference between the two methods is that insted of taking tm = arg max
x∈Ω

f(x) (see ‡ in algorithm 1), we

set an interpolation index
im = arg max

j∈I
|Rm(x,µ)j | (8.2.7)

The set I contains tuples of integers defining the index of an element of a vector (then the tuple has only one value)
or a matrix (he tuple has two values).

8.3 A posteriori error estimation
As we saw earlier, we have the following decompositions :

A(µ) =
Qa∑
q=1

βqAA
q F (µ) =

Qf∑
p=1

βpFF
p (8.3.1)

From now on we will use this convention : q [resp. p] is the index for the decomposition of A [resp. F ]. In the
following, we may forget to specify the bounds on sums, but the indices will be consistent with this convention (n will
goes from 1 to the reduced dimension N).

The residual error satisfies this equation :

(ê(µ), v)X =
∑
p

βpF (µ)fq(v)−
∑
q

∑
n

βqA(µ)unN (µ)aq(ξn, v) ∀v ∈ X (8.3.2)

We recall that (u, v)X = vTAµ̄u. This identity, using the superposition principle, leads to the following equation :

ê(µ) =
∑
p

βpF (µ)Sp +
∑
q

∑
n

βqA(µ)unN (µ)Ln,q (8.3.3a)

with :

(Sp, v) = fp(v) ∀v ∈ X,∀p ∈ J1, QF K
(Ln,q, v) = −aq(ξn, v) ∀v ∈ X,∀n ∈ J1, NK,∀q ∈ J1, QAK (8.3.3b)

Therefore, we have
Aµ̄Sp = F p Aµ̄Ln,q = −Aqξn (8.3.4)

In the following, the parameter dependency is not written : the terms in blue correspond to parameter-dependent
terms, while the one in red are independent of µ.

‖ê(µ)‖2X = (ê(µ), ê(µ))X

=
(∑

p

βpFS
p +

∑
q

∑
n

βqAu
n
NLn,q,

∑
p

βpFS
p +

∑
q

∑
n

βqAu
n
NLn,q

)
X
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As Aµ̄ is symmetric, we have (u, v)X = (v, u)X , so

‖ê(µ)‖2X =
∑
p

∑
p′

βpFβ
p′

F (Sp,Sp
′
)X + 2

∑
p

∑
q

∑
n

βpFβ
q
Au

n
N (Sp,Ln,q)X +

∑
q

∑
n

∑
q′

∑
n′

βqAβ
q′

Au
n
Nu

n′

N (Ln
′,q′ ,Ln,q)X

(8.3.5)
All the red terms in the previous equation can be calculated once and stored, to use them afterwards. Moreover,

these calculs are costly because of the vectors of size N involved. This is the offline stage. The data to be stored are

• a matrix of shape (QF , QF ), defined by SSp,p′ = (Sp,Sp′)X ,

• a tensor of shape (QA, QF , N), defined by SLq,p,n = (Sp,Ln,q)X

• a tensor of shape (QA, N,QA, N), defined by LLq,n,q′,n′ = (Ln,q,Ln′,q′)X

On the other hand, the blue terms are easily computed from a parameter µ. The final computation using the stored
results and these terms is the online stage.

8.4 Greedy algorithm
Definition 8.1. The relative output error bound is defined by the formula

∆N (µ) = ‖ê(µ)‖X
αlb(µ) (8.4.1)

Where

• ‖ê(µ)‖X is the norm of the residual error (see section 8.3)

• αlb(µ) is the coercivity constant of the bilinear form a, defined by αlb(µ) := inf
v∈X

a(v, v;µ)
‖v‖X

.

The algorithm 2 presents the Greedy algorithm. The main principle of this algorithm is to test which parameters
maximize the energy ∆N and add it to the sample.
Algorithm 2: Greedy algorithm
Input: µ0 ∈ D and Ξtrain ⊂ D
S ← [µ0]
while ∆max

N > ε do
u(µ?)← FE solution, using S as generating samplea

WN ← {ξ = u(m?)} ∪WN−1
µ? ← arg max

µ∈Ξtrain

∆N (µ) (and ∆max
N ← max

µ∈Ξtrain
∆N (µ))

Append µ? to S
end
Output: sample S, reduced basis W

aas new elements will be added to S, there is no need to compute the full basis at each step, but we can increase it.

In the test made during the internship (see section 9.9), the sampling Ξtrain contains only 100 parameters.

If the problem studied is time-dependant, we use the POD(t)-Greedy(µ) algorithm, described in algorithm 3. POD,
for Proper Orthogonal Decomposition, means that we optimally capture causality of time variation by keeping the m
POD modes at each step. Those modes are computed from the eigenvectors of the matrix 1

K
(eK , eK)X , where K is
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the number of time steps used in the simulation.
Algorithm 3: POD-Greedy algorithm
Input: µ0 ∈ D and Ξtrain ⊂ D, m ∈ N+∗

S ← [µ0]
while ∆max

N > ε do
for k ∈ 1,K do

uk(µ?)← FE solution at time tk ; ukN (µ?)← RB solution at time tk
ekK ← uk(µ?)−ΠNu

k
N (µ?)

end
V← eigenvectors of 1

K (eK , eK)X , associated to the m greater eigenvalues
Ψ

POD,i =
∑K
k=1 V

k
i u

k(µ?), added to the reduced basis, for i ∈ J1,mK
µ? ← arg max

µ∈Ξtrain

∆K
N (µ) (and ∆max

N ← max
µ∈Ξtrain

∆K
N (µ))

Append µ? to S
end
Output: S, reduced basis
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9. Implementation

9.1 Implementation using only NumPy
This section gathers the documentation for the first implementation of the problem. This corresponds to the code

produced during the S3 class Calcul Scientifique 3 [12], see this repository.

Remark 9.1. This documentation is up to date with the commit ReducedBasisNumPy of the repository Eye2brain.

9.1.1 ReducedBasisCst

ReducedBasisCst is a class corresponding to what is developed for problem 2, without time dependency.

• __init__(Aq, Fh, paramFunc) : initiates the object. The arguments are explained in this table :

Name Type Description
Aq list of matrices list of the matrices of the formes aq (see report 1)
Fh NumPy array Vector of the right-hand side of the equation
paramFunc python function function which returns the list of parameters [k1,k2,k3,k4,k0,Bi] from

given parameters

• gramSchmidt(Z) : runs the Gram-Schmidt algotithm on the matrix Z. The result of the call is a matrix orthonormal
according to the scalar product (u, v)Ā = vT · Ā · u, with Ā = A(ki = 1,Bi = 0.1).

• assembleA(mus) : assemble the FE matrix for a given list of parameters mu = {k1, k2, k3, k4, k0,Bi}

• generateOffline(mus) : generate the approximate basis from a given set of parameters (this set contains
arguments of the paramFunc), as well as the approximates matrices AqN of the linear decomposition, and the
right-hand side.

• generateOfflineFromZ(Z) : computes the appriximates matrices AqN and the right-hand side, from a reduced
basis matrix given.

• computeTNroot(mu) : returns the value of TN,root, for a givne parameter mu.

• getSolutions(mu) : returns the tuple (u,TNroot), where u is the vector solution of the reduced problem and
TNroot as in the previous method.

9.1.2 ReducedBasis

The class ReducedBasis heritages from the class ReducedBasisCst described in the previous section. It deals with
the time-dependent problem. The parameter-dependant problem to be solved is

m

(
uk(µ)− uk−1(µ)

∆t
, v

)
+ a

(
uk(µ), v;µ

)
= f(v)g(tk) (9.1.1)

with g a time-dependant function.

• __init__(Aq, Fh, paramFunc, alphaLB, M, tf, K) : initiates the object. The arguments are the one de-
scribed in the class ReducedBasisCst, to which we added these :

Name Type Description
alphaLB python function function which returns the theorical value of alpha_LB from the list of

parameters
M matrix matrix of mass of the function m
tf float final time
K integer number of time intervals, so ∆t = tf

K

• computeOffline and computeOfflineFromZ are overloaded functions from the mother class, because of the
presence of M.
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• generateApproxBasis(musk) : generates the reduced basis matrix from different parameters and different
instants. The argument musk is a dict containing the desired values of µ associated to every instant where
we chosen. For the example given in the subject, we take musk = 0.01:[1,5,10,20,30], 0.1:[5,10,20],
1:[5,10].

• solveTime(mus, g) and solveTimeForStudy(mus, g) : solves the time-dependant equation for a given param-
eter and time dependant function g. The argument mus is a list of all parameters of the problem, and g is a
vector containing the value of the funcitons g at times tk for k ∈ J1,KK. The firest function just returns the
solution uK(µ), while the return more detailed results :

Returned value Description
t time axis
sN [s] output of RB method [FE]
sDiff difference between the two methods
normN [norm] energy norm of RB method [FE]
normDiff difference between the two methods

These results are all NumPy arrays.

• computeErrorDirect(mu, g, computeEnergyNorm=False) : compute the error with a direct method.

• computeOfflineError(mu, g) : stores the offline data for error bound computation. More more details, report
to problem 4, part 2.

• computeOnlineError(mu, g, computeEnergyNorm=False) : computes the online error bound. A call to
computeOfflineError must be done before. The optional argument computeEnergyNorm is used in the POD-
Greedy function.

• podGreedy(mu0, mu_train, g, eps_tol) : runs the POD-Greedy algorithm. mu0 is the initial list of parameters,
mu_train is a set of parameters wehre the algorithm will run his tests, g is the time-dependant function and
eps_tol is the limit tolerence for the maximal of the error ∆N . The result of this funciton is a tuple composed
of :

Name Type Description
Z NumPy matrix matrix of the reduced basis (self.Z)
SN list list of all the parameters corresponding to the reduced basis
df_en pandas DataFrame values of the error obund at each iteration of the algorithm
maxs list values of ∆max

N at each iteration

the two last arguments allow us to make a study of the behavior of the algorithm.

Remark 9.2. In the following, an implementation of the POD-Greedy algorithm with many POD-many was made,
but at the end of the internship, this was not giving proper results.

9.2 Case generator
Many geometrical parameters are involved in the geometry described earlier : we could set the size of the fins, the

number of them for example, or even chose to have a three-dimensional model. The purpose of the script python
generate_cases is to generate from given parameters the files used by Feel++ : cfg, JSON and geo.

To do it, we use the python module liquidpy which takes templates of files (see this link), where « blanks » are
left. For instance, in the cfg template, the line to set the dimension of the case is

case.dimension={{ dim }}

In the Python script, the lines to generate the rendered file are the following. In the end, we just have to save the
str generated in a file.

env = Environment(loader=FileSystemLoader( "templates/" ))
templateCfg = env.get_template( "thermal-fin.cfg" )
renderCfg = templateCfg.render( dim = args.dim )

To set the parameter N for example, we simply have to call the script with the option --N 3. The parameters that
can be set are :

56

https://github.com/feelpp/feelpp/tree/7cd475074942472238f1e87587e71c5c75848304/mor/toolbox-mor/thermal-fin/templates


CHAPTER 9. IMPLEMENTATION 9.2. CASE GENERATOR

Post

Fin_1 Fin_1

Fin_2 Fin_2

Fin_... Fin_...

Fin_N Fin_N

L

t
d

Gamma_root

Gamma_ext

Figure 9.1: Geometry with different parameters

Cylinder 0 1 2

Figure

Nb of elt 1 773 437 1 014 216 999 087

Table 9.1: 3D geometries

Name Description Default value
N number of fins 4
L width of a fin 2.5
d distance between two fins 0.5
t thickness of a fin 0.25
dim dimension of the case (2 or 3) 2
cylinder shape of fin and post (0=boxes, 1=box/cylinders, 2=cylinders) 0

The figure 9.1 shows some of those parameters. In three dimension, three cases are possible, depending on the
parameter cylinder :

• cylinder = 0 : the geometry is composed only of boxes.

• cylinder = 1 : the central part of the thermal fin (Post) is a box and the fins are cylinders.

• cylinder = 2 : both central part and fins are cylinders.

A figure of these geometries, with its number of elements, if given in table 9.1.
The more tricky part of the templates is because of the parameter N : in the JSON, we have to list all the markers

associated with the fins. But this can easily be handled by liquid. For example, in N = 5, the code

"init":
{

"markers":[{% for item in fins %}"Fin_{{ item }}", {% endfor %}"Post"],
"expr":"0"

}

will render this, by setting fins = list(range(1,N+1)) in the renderer :

"init":
{

"markers":["Fin_1", "Fin_2", "Fin_3", "Fin_4", "Fin_5", "Post"],
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"expr":"0"
}

9.3 Pyfeelpp-mor
The programs of Feel++ dealing with reduced basis can be used in a Python module feelpp.mor. To get the

module available in a Python script, we have to do the following step, after the compilation is configured with CMake
as explained previously in appendix A :

cd mor
make install [-j 12]

To have all the libraries required by Python installed, the targets that we have to construct are :

• feelpp/pyfeelpp

• toolboxes/pyfeelpp-toolboxes

• feelpp/contrib

• feelpp/feel

The install command will create a directory inside build were all the applications generated and Python modules
will be stored. To make thoses modules accesible to a Python script, we have to add the path to this folder in then
environment variable PYTHONPATH :

export PYTHONPATH=<build dir>/install/lib/python3.8/site-packages:$PYTHONPATH
export LD_LIBRARY_PATH=<build dir>/install/lib/:<build dir>/install/lib/python3.8/site-packages/

The tool used to « convert » C++ code to Python is pybind [15]. Here is an example of code to create a Python
module from C++ code.

#include <pybind11/pybind11.h>

int add(int i, int j) { return i + j; }

PYBIND11_MODULE(python_example, m)
{

m.def("add", &add, "Add two numbers");
m.attr("__version__") = "1.0";

}

With the method def we define methods of the generated module, and with the method attr we define attributes
of the method. Then, with pip or CMake, we can install the module to use it in Python. Such an operation will create
a dynamic library (a so file) in the site-packages folder.

Then we can access this library in a Python script, either by being in the right folder, either by updating the
PYTHONPATH, as described earlier.

>>> import python_example
>>> python_exmaple.add(1,2)
3

9.4 The script toolboxmor.py

In this section, I will present the Python script toolboxmor.py1.

Remark 9.3. Usually, we are interested in running directly this script, with python3 :

1The state of the file at this time can be found here
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Model
• cfg
• JSON

Problem
A(µ)X = F (µ)

Model Order Reduction

• A(µ) ≈
∑
q

θAq (µ)Aq

• F (µ) ≈
∑
q′

θFq′(µ)Fq′

Reduced Basis
• ZN = [ξ1, · · · , ξN ] reduced basis
• S = {S1, · · · , SN} sample

Feel++ DEIM

POD-Greedy

Figure 9.2: Pipeline for Model Order Reduction

python3 toolboxmor.py --config-file opusheat/opusheat-heat.cfg

Doing that way, the interpreter will give the options to the environment using the variable sys.argv. If we don’t set
them, we get a segmentation fault. If we want to run the script step by step to study the behavior of the object and
methos called, on can be tricky and change by hand the content on sys.argv, and then run line by line the content of
the file (or using a notebook).

import sys
sys.argv += ['--config-file', '/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/opusheat/

↪→opusheat-heat.cfg']

On figure 9.2 is presented the different steps of the pipeline. The last arrow corresponds to what is done in my
program ReducedBasis.

Here are some functions used in the script :

• model.initModel(). This function runs the construction of affine decomposition using the DEIM algorithm,
on the matrix A, and on the right-hand side F . Two different decompositions are made. In pyfeelpp-mor the
functions <...>DEIM deal with the right-hand side F , and <...>MDEIM deal with the matrix of the bilinear form
A. One main advantage of this function is that the generated decomposition is saved. So if the offline generation
has already been made, the function just loads the decomposition from files.

• model.getAffineDecomposition : returns a tuple [Aq, Fq] containing the matrices of the affine decomposition
for A, and the vectors for F . The data are stored in a Petsc object, that can be manipulated afterward.

To get an instance of a parameter, we can use these lines

Dmu = model.parameterSpace()
mu = Dmu.element(True, False)

The first argument (True) tells that the parameter is shared with all the processors when the program is run in
parallel, and the second (False) tells whether or not the parameter is chosen log-randomly in the set of values.

In appendix B is presented the execution of the script step by step.

9.5 Module PETSc4py

PETSc [1] (for Portable, Extensible Toolkit for Scientific Computation) is a collection of classes, such as vectors or
matrices. It provides effective code for the various phases of solving PDEs and can be run in parallel. The library
petsc4py allows to use the functions of PETSc in a Python script.

Remark 9.4. If we want to run the content of some scripts by hand in a python shell, we first have to run those lines,
to set the environment of Feel++ and PETSc and avoid errors.
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import sys
import feelpp
sys.argv = ['test_feelpp']
e = feelpp.Environment(sys.argv)

Here is an example of code solving a linear system using the class KSP. The system to be solved is Ax = b. The
object pc is a preconditioner on the system.

from petsc4py import PETSc
KSP_TYPE = PETSc.KSP.Type.GMRES
PC_TYPE = PETSc.PC.Type.LU

ksp = PETSc.KSP()
ksp.create(PETSc.COMM_SELF)
ksp.setType(KSP_TYPE)
reshist = {}

def monitor(ksp, its, rnorm):
reshist[its] = rnorm
print("[petsc4py] Iteration {} Residual {}".format(its,rnorm))

ksp.setMonitor(monitor)
pc = ksp.getPC()
pc.setType(PC_TYPE)
ksp.setOperators(A)
ksp.setConvergenceHistory()
x = b.duplicate()
x.set(0)
ksp.solve(b, x) # the solution is present in the vector x

The function monitor allows to display information when the system is solved. On the following example, the
system solved is 

1 2 0 0 0
0 1 3 0 0
0 2 1 4 0
0 0 0 1 0
0 0 0 0 1

X =


1
1
1
1
1

 (9.5.1)

whose solution is
[
5 −2 1 1 1

]T . As twe use the LU decompisition as preconditioner, the convergence is immediate,
but other PC take more steps to converge.

[1]: ksp.solve(b, x)

[petsc4py] Iteration 0 Residual norm: 5.656854249492381
[petsc4py] Iteration 1 Residual norm: 9.420554752102651e-16

[2]: x[:]

[2]: array([ 5., -2., 1., 1., 1.])

9.6 Adaptation to PETSc
We presented in section 8.1 the program I developed using NumPy. Now we will present how we adapted it using

PETSc vectors and matrices. The main difference is that instead of storing the reduced basis in a matrix of shape
(NN,N), we store each vector PETSc of size NN in a list of length N. The main consequence of this is that we cannot
make a simple matrix multiplication.

For instance, listing 7 shows the code used to created the reduced matrices AqN for q ∈ J1, QaK. All the loops are
made only on « small » ranges : the reduced size N or the number of terms in the affine decomposition Qa.
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1 self.ANq = []
2 for q in range(self.Qa):
3 self.ANq.append(np.zeros((self.N,self.N)))
4 for i,u in enumerate(self.Z)
5 for j,v in enumerate(self.Z):
6 for q in range(self.Qa):
7 self.ANq[q][i,j] = v.dot( self.Aq[q] * u )

Listing 7: Computation of reduced matrices AqN

One way to check that the construction of the reduced basis is to skip the orthonormalization of the basis, then for
each µ used in the construction we check that the following values are equal.

Indeed, if we say that N = 1, for a fixed µi from the generation sample, we have uN (µi) = u0ξi, where ξi is the i-th
basis function, calculated by the FE method by µi, so u0 = 1. More generally, with any N we have uN (µi) = [δij ]16j6N

9.7 Description of the code produced
In this chapter, I will present the class ReducedBasisPETSc created to solve to work on the problem described in

The source code is available in the repository eye2brain.
The main principle of this class is that calculs with with vectors (of size N ) are done with PETSc, while online

calculs are made with NumPy.

9.7.1 Element of the class
This section lists the elements of the class. They will be used in other sections to compute the reduced basis, the

greedy algorithm...

• self.Aq, self.Fq are the matrices [resp vectors] of the decomposition given by DEIM. Theye are lists of
PETSc.Mat or PETSc.Vec with a size of self.Qa or self.Qf respectively.

• self.NN size of the FE problem, self.N size of the reduced basis (quantity updated during the geretation).

• self.model of type ToolboxMor_2D (or 3D) : model used to generate the DEIM decomposition.

• self.mubar parameter used for the energy norm (‖u‖X = uTAµ̄u).

• self.alphaLB function which returns the coefficient of coercivity fro the bilinear form a, depending on µ.

• self.Z is a list repserenting the matrix of the reduced basis. Each element of the list is a PETSc.Vec of size NN,
and the list has a size N, see figure 9.3. 


ξ0
0
ξ1
0
...
ξN0

 ,

ξ0
1
ξ1
1
...
ξN1

 , . . . ,

ξ0
N

ξ1
N
...
ξNN


self.Z =

N

NN

Figure 9.3: Structure of self.Z

• self.ANQ, self.FNp, lists of sizes Qa and self.Qf respectively, containing the reduced matrices (of shape (N,N))
and vectors (of size N).

• self.Sp a list containing PETSc.Vec of size NN, corresponding to vectors Sp (see section 8.3), and self.Lnq a
dictionnary containing the vectors Ln,q.

• the three following NumPy matrices contain the offline values for the a posteriori error
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name shape definition
self.SS (Qf, Qf) SS[p,p’] = (Sp,Sp′)X
self.SL (Qf, Qa, N) SL[p,n,q] = (Sp, Ln,q)X
self.LL (Qa, N, Qa, N) LL[n,q,n’,q’] = (Ln,q,Ln′,q′)X

• Other elements of the class are used by the library PETSc4py for solving the systems of equations (self.Abar,
self.ksp...)

9.7.2 Methods of the class
This section lists and describes the methods of the class. The methods with a blue bullet are the fonctions that the

user of the class will mostly use.

• __init__(self, Aq, Fq, model, mubar, alphaLB) -> None, initiates the object. The meaning of the argu-
ment is described in the previous section.

• scalarA(self, u, v) -> float, computes the scalar product (u, v)X = uTAµ̄v.

• normA(self, u) -> float compute the energy norm of the vector u

• orthonormalizeZ(self, nb=0) -> None, use Gram-Schmidt algorithm to orthonormalize the reduced basis
self.Z (the optionnal argument is not needed, it is a barrier in case the matrix is hard to orthonormalize)

• assembleA(self, betaA) -> PETSc.Mat and assembleF(self, betaF) -> PETSc.Vec. Assemble the matrice
A =

∑Qa
q βqAA

q and the vector F =
∑Qf
p βpFF

p from a given list of parameters. From a given
ParameterSpaceElement mu, the lines to get both A(µ) and F (µ) are

1 [betaA, betaF] = model.computeBetaQm(mu) # rb.model.computeBetaQm(mu)
2 A = rb.assembleA(betaA[0])
3 F = rb.assembleF(betaF[0][0])

• assembleAN(self, beta, size=None) [resp. assembleFN(self, beta, size=None)], assembles the reduced
matrix [resp. right-hand side] from a given vector of parameters. The parameter size corresponds to size of the
sub-basis wanted, the default value is None, meaning the whole basis is used.

• generateZ(self, mus, orth=True) -> None, generates the base matrix self.Z. The argument are the same
as in the function computeOfflineReducedBasis.

• test_orth(self) -> bool, tests is the matrix slef.Z is orthonormal.

• generateANq(self), generateLNp(self) and generateFNp(self), those three functions computes reduced
matrices or vectors ((AqN )i,j = ξjA

qξi, (LpN )i = (F pN )i = ξi · F p).

• computeOfflineReducedBasis(self, mus, orth=True) -> None, computes the reduced basis and reduces
matrices from a set of parameters.

Argument Description
mus list of N ParameterSpaceElement to evalutate offline

orth (default to True) set the orthonormalization of the basis

• getSolutionsFE(self, mu), computes the finite element solution (problem of size N ). This function retrus the
tuple (uN , sN )

• getSolutions(self, mu, size=None), computes the online solution and output (uN , sN ). The parameter size
is the size of the sub-basis used (defaults is None, meaning the whole basis is used)

• computeOfflineErrorRhs(self), computeOfflineError(self), compute offline errors. The first function is
the error about the right-hand side (Sp) independant of N , and the second about the basis (Ln,q)

• expandOffline(self), add errors to values computed in previous steps. Before this function is called, the last
column of Z must be computed.

• computeOnlineError(self, mu, precalc=None), computes the squared a posteriori online error ‖ê(µ)‖2X , from
a parameter µ
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Argument type Description
mu ParameterSpaceElement parameter µ

precalc = None dict (optional) Dict containing the values of betaA, betaF and uN if these
values have already been calculated. Defaults to None. If
None is given, the quantities are calculated in the function

• computeDirectError(self, mu, precalc=None), computes a posteriori error ‖ê(µ)‖X using a direct method
(costly), from a parameter µ. The parameters of this functions are the same as the previous one.

• computeEnergyBound(self, mu, precalc=None), computes
‖ê(µ)‖X√
αLB(µ)

• compareSols(self, mu), compares solutions between reduced basis and finite element method. The function

returns the relative error ‖uN − uN ‖
‖uN ‖

.

• projFE(self, uN), computes the projection of the RB solution (of size N) to the FE space (of size N ).

Remark 9.5. The convention described in figure 9.3 raises an issue : when we want to project the reduced
basis solution uN onto the FE space, we can’t apply the formula W = ZN · uN . This problem is illustrated on
figure 9.4. One way to compute this multiplication is to make a loop on NN and sum the terms by hand, but this
method can be costly (it means makin of loop in Python of size N ). Unfortunately, I have not found yet another
way to do it. 


 ,

 ,




N

NN ·

u1
N

u2
N

u3
N

 = W

Figure 9.4: Illustration of the issue raised by the storage of the matrix

• greedy(self, mu_0, Dmu, eps_tol, Nmax), runs the Greedy algorithm 2. The functions returns the list of the
parameters used to generate the basis.

Argument Type Default value Description
mu_0 ParameterSpaceElement First parameter to generate the basis
Dmu list of parameters Set Ξtrain for the algorithm

eps_tol float 1e-6 Tolerance of the algo
Nmax int 40 maximal size of the algorithm

The two following functions saveReducedBasis and loadReducedBasis allow to save the basis once it is generated
and load it.

• saveReducedBasis(self, path, force=False) save the reduced basis using Pickle. Args: path (str): path of
the directory whre data are to be saved force (bool, optional): Force saving, even if files are already present.
Defaults to False. """

• loadReducedBasis(path, model), loads the basis from the files saved in the directory path. The argument
model is the object ToolboxMor_2D (or 3D), which is loaded in the global script.

9.7.3 Next steps
There are still some features that can be added to the program. First of all, the time-dependant problem and

POD greedy algorithm (3) have not yet been implemented using PETSc objects. Then a bridge with the fmu must be
implemented, using FMPy which is a library allowing to simulate FMU (see section 5.2). We began to handle this
tool during the internship, on the geometry of the thermal fin problem. The main problem of this library is that the
documentation is not extensive, but it provides a Graphical User Interface.
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Figure 9.5: Relative error for a fixed parameter
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Figure 9.6: Minimum, maximum and mean for relative error

9.8 First results
Let’s run the script to see if the code returns right results. We construct a reduced basis of size 8, using the

paramters given in the problem 22 We take the parameter µ defined with those values :

mu.setParameters({"Bi":0.1, "k_0":1, "k_1":1.5, "k_2":1.5, "k_3":1.5, "k_4":1.5})

The first thing to check is that the generated reduced basis gives results approximately equal to the FE solution.
With µ = 1.5, we have :

Solution big problem : 1.4889615506729705
Solution reduced problem : 1.4889615506061944
Relative Error 4.484745770818489e-11

We can also check the evolution of the error while the reduced basis grows. This result is presented on figure 9.5.
We see that the relative error is under 1 % after 4 functions in the basis. But if we try to make the same calculation
with many parameters (here 50) taken in the space, we find an odd behavior : the relative error stays stuck above
10 %, as we can see on figure 9.6.

In the quest of what could cause erroneous results, we can check that the matrix generated by the toolbox for the
bilinear form is correct, by testing it with simple functions. For the thermal-fin problem, we have

a(w, v;µ) =
4∑
i=0

ki
∫
Ωi
∇w · ∇v + Bi

∫
Γ\Γroot

wv

Taking w = v = 1, we should find a(w, u,µ) = Bi meas(Γ \Γroot). With Feel++, we can measure parts of the geometry.
More precisely, Γ \ Γroot corresponds to the face Γext.

2These parameters are {"Bi":0.1, "k_0":1, "k_1":k, "k_2":k, "k_3":k, "k_4":k} for k∈[0.1, 10., 0.19179103, 3.94420606,
0.12618569, 0.38535286, 2.15443469, 0.10974988]
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Figure 9.7: Minimum, maximum and mean for relative error

[1]: mesh = heatBox.mesh()
measure(range=feelpp.markedfaces(mesh,"Gamma_ext"))

[1]: 47.50000000000003

[2]: A = heatBox.assembleMatrix().mat()
A.assemble()
F = heatBox.assembleRhs().vec()
F.set(1) # F = [1,1,...]
F.assemble()
F.dot(A * u) # F.T @ A @ F

[2]: 47.50000000000037

Actually, the problem was an issue of configuration / construction : in the JSON, the parameter space was defined
to have 6 dimensions (ki for i ∈ J0, 4K, and Bi). But on the construction, the parameters used are all on a same
1-dimensional subspace (see footnote 2). This is the reason why the error was high with a parameter outside the
subspace and small with a parameter within. To solve this we have two choices : we can change the JSON to make
appear only 1 parameter k and set all the other values according to this parameter, or we can construct the reduced
basis with parameters in the whole space.

On figure 9.7 the result using the first solution is plotted3. Using the 6 dimensions would give fewer good errors
because the parameters are chosen randomly in the space. In the following section, we will focus on a greedy algorithm
to chose these parameters.

9.9 Results of the greedy algorithm
In this section, we will use the model described in section 8.1, with coupled parameters : we have k0 = 1,

k1 = k2 = k3 = k4 and Bi = 0.1. Hence, the space of parameters has a dimension of 1 (moreover, it would be difficult
to plot figures in 6D !). We will also be constant in time.

On figure 9.8, the energy for all parameters of the train set Ξtrain is plotted, on a different step of the algorithm.
An interactive figure can be found on the repository here. We can figure that the energy globally decreases after each
iteration.

The following block of code shows how to call the function running the greedy algorithm. In the log displayed
during the execution, the integer shows the current size of the basis, and the float shows the maximum of the energy
obtained during the previous step. This maximum has to reach the tolerance to stop the algorithm. In a case where
this tolerance is never reached, a maximal size for the basis has been implemented.

3The function called in the script to get such results is cvgRelError
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Figure 9.8: Ernergy on different steps of greedy algorithm

[1]: Xi_test = listOfParams(100)
mu0 = Dmu.element(True, False)
S = rb.greedy(mu0, Xi_test)
S

[reduced basis] Greedy alg. 1 1.2646922390981183
[reduced basis] Greedy alg. 2 0.11555684305275059
[reduced basis] Greedy alg. 3 0.005074361519291918
[reduced basis] Greedy alg. 4 0.000252748470349559
[reduced basis] Greedy alg. 5 2.4362701123146925e-06
[reduced basis] Greedy alg. 6 9.63811004486168e-08

[2]: [0.19, 9.98, 2.08, 0.447, 5.28, 0.227]

Let Ξtest be a set of elements of D. As we did earlier, we measure the relative error on the output sN (µ) and the
solution uN (µ) for all µ ∈ Ξtest, and plot the minimum, maximum and mean on the set, for different values of N .
Doing this, we can compare the log-random generated basis to the basis computed by the greedy algorithm.

The result is the plot on figure 9.9. We see that there is no such difference between the two methods. We could
expect that because the space is « reduced ».

Let’s look at the problem where the parameters are in a space of 5 dimensions (all the parameters ki except k0 and
Bi can vary). This time the greedy-algorithm take more step to give an energy error under the tolerance ε = 10−6 :
the reduced basis has 42 functions. The figure 9.10 shown on the one hand the evolution of the maximum of the energy
as the algorithm runs and on the other hand, the time used by the python function to test all the 1 000 elements of
Ξtrain to get the best one. We can figure that the more the basis grows, the longer time it takes.

The figure 9.11 gives a comparison of the relative error obtained with this reduced basis (drawn in purple), and a
basis of different sizes, generated from random parameters. The computation of the error is made on the same sample
Ξtest of size 50. We see that the greedy sampling gives better results than when the basis is chosen randomly. Of
course, if we take a random basis of a big size (such as 40 in the figure) we will have better results, but the goal is to
keep a small basis.

The computation of ∆max
N is done on the output. This is why the difference between the two curves is larger for the

relative error on output.
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Figure 9.9: Comparaison of relative error when D has a dimension 1
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Figure 9.10: Execution of greedy algorithm
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Figure 9.11: Comparaison of relative error when D has a dimension 5
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10. Applications

During the internship, the code described in the previous sections was not used on a practical case for Eye2brain.
The idea would be in terms to run the physical model described in chapter 4 and more complex model of the eye,
and run sensibility analysis to compute Sobol indices. Such a study has already been made on the OMVS [13] using
meta-models to compute those indices.

The variables of interest for the computation of those indices can be physiological such as the intraocular pressure
(IOP). They can also be geometrical : a patient could have an eye with an elongated shape. The issue raised by such a
variable is that the geometry and the mesh of the eye are no longer the same.
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A. Feel++

Feel++ is a powerful, expressive, and scalable finite element embedded library in C++. It allows solving partial
differential equations with generalized Galerkin methods and export results to visualize them with Paraview. It is
developed by Cemosis. Toolboxes allow expanding conventional models into multi-physics to solve coupled equations.

Feel++ is available on a Github repository [5].

A.1 Building Feel++
For this internship, we won’t use all the libraries that are implemented with Feel++, so there is no need to compile

them all. In this section, I will present how to compile just what is needed1

On Atlas, the compilation is faster if we are on a node of the machine, with many cores. To access one of them, we
use the command salloc :

salloc -t "02:00:00" -p public -J "feelpp" --exclusive -N 1 -n 12 srun --pty ${SHELL}

We also need to load a module on Atlas, to have the right libraries to build Feel++ :

module load feelpp.profile_gcc830_openmpi402

We have to create a build directory, where the compiled programs will be, among all the files handled by CMake.

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang -
↪→DCMAKE_INSTALL_PREFIX=. -DFEELPP_ENABLE_TOOLBOXES=ON -DFEELPP_ENABLE_MOR=ON -DFEELPP_ENABLE_
↪→TESTS=ON -DFEELPP_PARMMG_DOWNLOAD_METIS=ON <path to feelpp cloned repo>

The files are organized so that exactly what is needed is compiled. For instance, if we want to compile all the
program associated to the toolbox hdg, we enter these commands :

cd toolboxes/hdg
make [install] -j 12

• The -j 12 option tells the number of cores used to make the compilation.

• The keyword install is optional. It tells to CMake to put links to generated application in a directory install.
This will also be usefull to install Python modules, cf section 9.3.

A.2 Handling the software
During the course in S2 and the project–internship made last year, I already needed to handle and test Feel++. In

this section, I will recall the principle, and run some examples with the toolbox hdg.

To run a simulation with Feel++, we need three files :

• A geometry file, already meshed or not (respectively with the format msh / geo). The domain shown on figure
A.1 is described on listing 8.

• A JSON file, where the configuration of the equation is made : the initial condition and the boundary conditions
are given. See listing 9 for an example.

• A configuration file in cfg format. This file contains all the global parameter for the simulation : the time-steps,
the path to the geometry and the json file... The listing 10 shows such an example.

1See the installation page for more information
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1 h=0.1;
2 Point(1) = {0,0,0,h};
3 Point(2) = {0,2,0,h};
4 Point(3) = {2,2,0,h};
5 Point(4) = {2,0,0,h};
6 Line(1) = {1,2};
7 Line(2) = {2,3};
8 Line(3) = {3,4};
9 Line(4) = {4,1};

10 Line Loop(5) = {1,2,3,4};
11 Plane Surface(1) = {5};
12 Physical Surface("omega") = {1};
13 Physical Line("left") = {1};
14 Physical Line("top") = {2};
15 Physical Line("right") = {3};
16 Physical Line("bottom") = {4};

Listing 8: Example of a geo file, see figure A.1

Ω
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ft

ri
gh
t

top

bottom

Figure A.1: Geometry described in listing 8

1 {
2 "Name": "HDG-Mixed-Poisson ",
3 "ShortName": "MP",
4 "Models": {"equations":"hdg"},
5 "Materials":
6 {
7 "omega": { "name":"copper", "cond":"-1" }
8 },
9 "BoundaryConditions":

10 {
11 "potential":
12 {
13 "SourceTerm":
14 {
15 "omega": { "expr":"-sin(Pi*x)*sin(Pi*y):x:y" }
16 },
17 "Neumann":
18 {
19 "top": { "expr": "sin(Pi*x)/(2*Pi):x" },
20 "bottom": { "expr": "-sin(Pi*x)/(2*Pi):x" },
21 "left": { "expr": "-sin(Pi*y)/(2*Pi):y" },
22 "right": { "expr": "sin(Pi*y)/(2*Pi):y" }
23 }
24 }
25 },
26 "Functions":
27 {
28 "u": { "expr": "{0,0}" },
29 "p": { "expr": "1/(2*Pi*Pi)*sin(Pi*x)*sin(Pi*y):x:y" }
30 },
31 "PostProcess":
32 {
33 "Exports": { "fields": ["potential","flux"] }
34 }
35 }

Listing 9: Example of a json file
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(a) Potential (b) Flux

Figure A.2: Result of test HDG Darcy 2D

1 directory=toolboxes/hdg/testDarcy2D/testDarcy2D
2 case.dimension=2
3 case.discretization=P1
4

5 [hdg.poisson]
6 filename=$cfgdir/testDarcy2D.json
7 [picard]
8 itol=1e-15
9 itmax=5

10

11 [exporter]
12 element-spaces=P0
13 [gmsh]
14 filename=$cfgdir/testDarcy2D.geo
15 hsize=0.01

Listing 10: Example of a cfg file

The command to run the simulation is the following :

mpirun -np 4 feelpp_toolbox_hdg_poisson --config-file <path to cfg file>

feelpp_toolbox_hdg_poisson is the name of the toolbox used for the simulation, this application depends on the
model we are studying. There are many toolboxes available in Feel++, see the documentation.

We can run Feel++ in parallel, using mpirun.
In the PostProcess section of the JSON, we can set many fields to export, depending on the toolbox used. In

the example above, we choose to export potential and flux2. The application generates files that can be read by
Paraview. Those results are given in figure A.2.

A.3 Open the geometry with Paraview
The Salome script returns a mesh in med format, this is a binary file that can’t be read by ParaView or Feel++.

We have to use Gmsh to convert it to a msh file. Unfortunately, this file format cannot be opened by Paraview ether,
but we can use a Feel++ program to convert it : feelpp_mesh_exporter3.

feelpp_mesh_exporter --gmsh.filename eye-mesh.msh

2refer to chapter 6 to see what those quantities represent
3see the manual page.
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The result of this operation is a case file that can be opened with Paraview. Many pieces of information are present,
here we will focus on the one named marker, which is simply the number of volume markers in the geometry. The
advantage of Paraview is that we can set a camera to follow a trajectory to « record » the geometry. We can also
change to opacity or the position of the objects displayed.

Such a video, showing the geometry of the eye with all markers can be found on this link.

A.4 feelpp_mesh_partitioner

When we use the generated mesh in a Feel++ application, such as feelpp_toolbox_coefficientformpdes (see
section 3.3) on many processors, the application doesn’t split the mesh on those cores, all the calculations are made
on a single one. To avoid it, we have to partition the mesh before launching the toolbox. We can make it with the
application feelpp_mesh_partitionner4.

For example, with the following command

feelpp_mesh_partitioner --part 12 --ifile $HOME/mesh/eye-mesh.msh --odir $HOME/mesh/
↪→partitionned/

the mesh /home/u2/saigre/mesh/eye-mesh.msh will be partitionned in 12 submeshes. The corresponding files will
be present in the directory partitionned. On the command line, we have to give the absolute path for files because
the folder where the program is executed is different from the one it is called.

This action results in two files : a binary file (with the h5 extension), and a JSON file. This last file is the one that
we give as an option to the field mesh.filename in the config file. To have an idea of the time saved with the partition
: without it, the application took more than 2 minutes to run, while the partitioned one took only 25 seconds.

In the next section, we will solve a mathematical model with our geometry to test the mesh : if we get some strange
results, this may be the consequence of a problem in the geometry. In chapter 3, simple tests are made on the geometry.

A.5 Pyfeelpp
This feature of Feel++ is still in development. It provides python packages to solve PDEs and uses the toolbox

framework, see the documentation. More details on it are given in this report, in section 9.3.

4see the manual page.

76

https://github.com/feelpp/eye2brain-doc/blob/master/Reports/2021/saigre/geometry/fig/res/eye-geometry.mp4
https://docs.feelpp.org/user/0.109/python/index.html
https://docs.feelpp.org/user/0.109/using/tools/mesh_partitioner.html


B. Script toolboxmor.py

This example runs the opus-heat case.

B.1 Initialisation of the environment
We begin by loading all the modules necessary.

[1]: import sys
sys.argv += ['--config-file', '/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/opusheat/
↪→opusheat-heat.cfg']

[2]: import feelpp
from feelpp.mor import *
from feelpp.toolboxes.heat import *

Welcome to the Feel++ Toolboxes

Now we set the Feel++ environment, then we initialize the toolbox and the MOR model.
[3]: o = toolboxes_options("heat")

o.add(makeToolboxMorOptions())
e = feelpp.Environment(sys.argv,opts=o)

[ Starting Feel++ ] application ipython3 version 0.1 date 2021-Jun-20
[feelpp] create Feel++ repository "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb" ...
[feelpp] create Feel++ geo repository "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/geo" ...
[feelpp] create Feel++ exprs directory "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/./exprs" ...
. ipython3 files are stored in /home/u2/saigre/feel/pyfeelpp-mor/feelppdb/./np_1
.. logfiles :/ssd/saigre/build/install/lib/feelppdb/./np_1/logs

B.2 Compute the offline decomposition

[4]: heatBox = heat(dim=2,order=1)
heatBox.init()

heat(2,1)
[modelProperties] Loading Model Properties : "/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/
↪→opusheat/opusheat-heat.json"

[5]: model = toolboxmor_2d()
model.setFunctionSpaces( Vh=heatBox.spaceTemperature() )

Model repository: /home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/toolboxmor/
↪→f49a4d9e-103f-4167-adf3-cd723779c3f3
[modelProperties] Loading Model Properties : "/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/
↪→opusheat/opusheat-heat.json"

In this cell, we set the functions which will be used by the toolbox to assemble the right-hand side (assembleDEIM),
and the matrix (assembleMDEIM).

[6]: def assembleDEIM(mu):
for i in range(0,mu.size()):

heatBox.addParameterInModelProperties(mu.parameterName(i),mu(i))
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heatBox.updateParameterValues()
return heatBox.assembleRhs()

def assembleMDEIM(mu):
for i in range(0,mu.size()):

heatBox.addParameterInModelProperties(mu.parameterName(i),mu(i))
heatBox.updateParameterValues()
return heatBox.assembleMatrix()

model.setAssembleDEIM(fct=assembleDEIM)
model.setAssembleMDEIM(fct=assembleMDEIM)

Then we initialize the model. The DEIM using the greedy algorithm is run, and the results are saved. In the output,
we can see the different steps of the algorithm, with the parameter chosen using a greedy method. As the maximal size
is given (40), but in this case, we reach the tolerance after 4 steps for the right-hand side and 5 for the matrix.

[7]: model.initModel()

Number of local dof 8441
Number of dof 8441
Model repository: /home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/toolboxmor/
↪→f49a4d9e-103f-4167-adf3-cd723779c3f3
[modelProperties] Loading Model Properties : "/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/
↪→opusheat/opusheat-heat.json"
DEIMvec0 : No Database loaded : start greedy algorithm from beginning
DEIMvec0 Offline sampling size = 40
DEIMvec0 : Sampling size (=40) smaller than deim.dimension-max (=100), dimension max is now 40
===========================================
DEIMvec0 : Start algorithm with mu=[0.651348,1.66918,1.42955,987879,901133,5.44408]

[DEIMvec0 : Add new vector] Time : 0.0675207s
[DEIMvec0 : compute best fit] Time : 1.20456s

DEIMvec0 : Current max error=0.00424217, Atol=1e-16, relative max error=0.00424217, Rtol=1e-14,␣
↪→for mu=[4.89352,1.11482,1.92775,626272,592027,28.0212]
===========================================
DEIMvec0 : Construction of basis 2/40, with mu=[4.89352,1.11482,1.92775,626272,592027,28.0212]

[DEIMvec0 : Add new vector] Time : 0.000278964s
[DEIMvec0 : compute best fit] Time : 0.00842828s

DEIMvec0 : Current max error=0.0029714, Atol=1e-16, relative max error=0.0029714, Rtol=1e-14,␣
↪→for mu=[1.46602,2.69517,2.69063,11430.3,354775,5.21863]
===========================================
DEIMvec0 : Construction of basis 3/40, with mu=[1.46602,2.69517,2.69063,11430.3,354775,5.21863]

[DEIMvec0 : Add new vector] Time : 0.000267437s
[DEIMvec0 : compute best fit] Time : 0.00849803s

DEIMvec0 : Current max error=0.00247159, Atol=1e-16, relative max error=0.00247159, Rtol=1e-14,␣
↪→for mu=[2.18272,2.76524,2.98617,872604,19092.2,10.6341]
===========================================
DEIMvec0 : Construction of basis 4/40, with mu=[2.18272,2.76524,2.98617,872604,19092.2,10.6341]

[DEIMvec0 : Add new vector] Time : 0.000319684s
[DEIMvec0 : compute best fit] Time : 0.00867022s

DEIMvec0 : Current max error=2.15622e-18, Atol=1e-16, relative max error=2.15622e-18,␣
↪→Rtol=1e-14, for mu=[4.07809,2.80587,1.20672,197663,457850,8.9885]
===========================================
DEIMvec0 : Tolerance reached !
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/np_1/
↪→deimvec0-submesh.msh"
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/np_1/
↪→deimvec0-submesh.msh" done
===========================================
DEIMvec0 : Stopping greedy algorithm. Number of basis function : 4

[DEIMvec0 : Offline Total Time] Time : 0.012811s
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Electric DEIM construction finished!!
Model repository: /home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/toolboxmor/
↪→f49a4d9e-103f-4167-adf3-cd723779c3f3
[modelProperties] Loading Model Properties : "/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/
↪→opusheat/opusheat-heat.json"
MDEIMmat0 : No Database loaded : start greedy algorithm from beginning
MDEIMmat0 Offline sampling size = 40
===========================================
MDEIMmat0 : Start algorithm with mu=[1.13625,2.57564,1.64121,773238,813727,5.32909]

[MDEIMmat0 : Add new vector] Time : 0.216194s
[MDEIMmat0 : compute best fit] Time : 9.37655s

MDEIMmat0 : Current max error=0.749989, Atol=1e-16, relative max error=0.749989, Rtol=1e-12, for␣
↪→mu=[2.9341,1.01357,2.58331,843025,559995,15.6723]
===========================================
MDEIMmat0 : Construction of basis 2/20, with mu=[2.9341,1.01357,2.58331,843025,559995,15.6723]

[MDEIMmat0 : Add new vector] Time : 0.219805s
[MDEIMmat0 : compute best fit] Time : 9.20379s

MDEIMmat0 : Current max error=0.0891174, Atol=1e-16, relative max error=0.0891174, Rtol=1e-12,␣
↪→for mu=[0.719976,1.237,1.03514,603668,534815,9.64773]
===========================================
MDEIMmat0 : Construction of basis 3/20, with mu=[0.719976,1.237,1.03514,603668,534815,9.64773]

[MDEIMmat0 : Add new vector] Time : 0.230843s
[MDEIMmat0 : compute best fit] Time : 9.26244s

MDEIMmat0 : Current max error=0.00051939, Atol=1e-16, relative max error=0.00051939, Rtol=1e-12,␣
↪→for mu=[4.75596,1.60303,1.08847,313124,16233.2,25.3365]
===========================================
MDEIMmat0 : Construction of basis 4/20, with mu=[4.75596,1.60303,1.08847,313124,16233.2,25.3365]

[MDEIMmat0 : Add new vector] Time : 0.243057s
[MDEIMmat0 : compute best fit] Time : 9.29087s

MDEIMmat0 : Current max error=0.000414145, Atol=1e-16, relative max error=0.000414145,␣
↪→Rtol=1e-12, for mu=[0.269938,1.26076,1.69417,237421,143259,23.809]
===========================================
MDEIMmat0 : Construction of basis 5/20, with mu=[0.269938,1.26076,1.69417,237421,143259,23.809]

[MDEIMmat0 : Add new vector] Time : 0.226725s
[MDEIMmat0 : compute best fit] Time : 9.19958s

MDEIMmat0 : Current max error=5.50548e-16, Atol=1e-16, relative max error=5.50548e-16,␣
↪→Rtol=1e-12, for mu=[3.6409,2.26667,2.2522,822318,385227,1.32961]
===========================================
MDEIMmat0 : Tolerance reached !
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/np_1/
↪→mdeimmat0-submesh.msh"
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/np_1/
↪→mdeimmat0-submesh.msh" done
===========================================
MDEIMmat0 : Stopping greedy algorithm. Number of basis function : 5

[MDEIMmat0 : Offline Total Time] Time : 0.0128268s
Electric MDEIM construction finished!!

If we run again the previous cell, as the algorithm has already been fulfilled, the model is loaded from the files saved.

Number of local dof 8441
Number of dof 8441
Model repository: /home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/toolboxmor/
↪→f49a4d9e-103f-4167-adf3-cd723779c3f3
[modelProperties] Loading Model Properties : "/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/
↪→opusheat/opusheat-heat.json"
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/
↪→toolboxmor/f49a4d9e-103f-4167-adf3-cd723779c3f3/deimvec/deimvec0-submesh.msh"
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/
↪→toolboxmor/f49a4d9e-103f-4167-adf3-cd723779c3f3/deimvec/deimvec0-submesh.msh" done
DEIMvec0 : Database loaded with 4 basis functions
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DEIMvec0 : Start reassambling 4 basis vectors
DEIMvec0 : reassemble for mu=[0.651348,1.66918,1.42955,987879,901133,5.44408]
DEIMvec0 : reassemble for mu=[4.89352,1.11482,1.92775,626272,592027,28.0212]
DEIMvec0 : reassemble for mu=[1.46602,2.69517,2.69063,11430.3,354775,5.21863]
DEIMvec0 : reassemble for mu=[2.18272,2.76524,2.98617,872604,19092.2,10.6341]
===========================================
DEIMvec0 : Stopping greedy algorithm. Number of basis function : 4

[DEIMvec0 : Reassemble 4 basis] Time : 0.199402s
Electric DEIM construction finished!!
Model repository: /home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/toolboxmor/
↪→f49a4d9e-103f-4167-adf3-cd723779c3f3
[modelProperties] Loading Model Properties : "/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/
↪→opusheat/opusheat-heat.json"
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/
↪→toolboxmor/f49a4d9e-103f-4167-adf3-cd723779c3f3/deimmat/mdeimmat0-submesh.msh"
[loadMesh] Loading Gmsh compatible mesh: "/home/u2/saigre/feel/pyfeelpp-mor/feelppdb/crbdb/
↪→toolboxmor/f49a4d9e-103f-4167-adf3-cd723779c3f3/deimmat/mdeimmat0-submesh.msh" done
MDEIMmat0 : Database loaded with 5 basis functions
MDEIMmat0 : Start reassambling 5 basis vectors
MDEIMmat0 : reassemble for mu=[1.13625,2.57564,1.64121,773238,813727,5.32909]
MDEIMmat0 : reassemble for mu=[2.9341,1.01357,2.58331,843025,559995,15.6723]
MDEIMmat0 : reassemble for mu=[0.719976,1.237,1.03514,603668,534815,9.64773]
MDEIMmat0 : reassemble for mu=[4.75596,1.60303,1.08847,313124,16233.2,25.3365]
MDEIMmat0 : reassemble for mu=[0.269938,1.26076,1.69417,237421,143259,23.809]
===========================================
MDEIMmat0 : Stopping greedy algorithm. Number of basis function : 5

[MDEIMmat0 : Reassemble 5 basis] Time : 1.27214s
Electric MDEIM construction finished!!

[8]: heatBoxDEIM = heat(dim=2,order=1)
meshDEIM = model.getDEIMReducedMesh()
heatBoxDEIM.setMesh(meshDEIM)
heatBoxDEIM.init()

Now we create a heat toolbox, using the reduced basis created previously.

heat(2,1)
[modelProperties] Loading Model Properties : "/ssd/saigre/feelpp/mor/pyfeelpp-mor/feelpp/mor/
↪→opusheat/opusheat-heat.json"

Then, as earlier, we set the function to assemble from a parameter. This time the function will make online
computations. This cell is for the right-hand side.

[9]: def assembleOnlineDEIM(mu):
for i in range(0,mu.size()):

heatBoxDEIM.addParameterInModelProperties(mu.parameterName(i),mu(i))
heatBoxDEIM.updateParameterValues()
return heatBoxDEIM.assembleRhs()

model.setOnlineAssembleDEIM(assembleOnlineDEIM)

And we make the same step for the matrix.
[10]: heatBoxMDEIM=heat(dim=2,order=1)

meshMDEIM = model.getMDEIMReducedMesh()
heatBoxMDEIM.setMesh(meshMDEIM)
heatBoxMDEIM.init()

def assembleOnlineMDEIM(mu):
for i in range(0,mu.size()):

heatBoxMDEIM.addParameterInModelProperties(mu.parameterName(i),mu(i))
heatBoxMDEIM.updateParameterValues()
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return heatBoxMDEIM.assembleMatrix()

model.setOnlineAssembleMDEIM(assembleOnlineMDEIM)

Finally, we post-initialize the model.
[11]: model.postInitModel()

model.setInitialized(True)

B.3 Online computations
Here we get the matrixes and right-hand sides from the decomposition.

[12]: [Aq, Fq] = model.getAffineDecomposition()

Remark B.1. This feature has been added later in the module (see commit 94dc18f0) : if the model is time-dependant,
we can get the mass matrix with the same function :

[12]: [Mq,Aq, Fq] = model.getAffineDecomposition()

[13]: Aq

[13]: [[<feelpp._alg.MatrixPetscDouble object at 0x7f54186cdc70>,
<feelpp._alg.MatrixPetscDouble object at 0x7f5418727270>,
<feelpp._alg.MatrixPetscDouble object at 0x7f54187329f0>,
<feelpp._alg.MatrixPetscDouble object at 0x7f54186bc070>,
<feelpp._alg.MatrixPetscDouble object at 0x7f54186f3730>]]

[14]: Fq

[14]: [[[<feelpp._alg.VectorPetscDouble object at 0x7f541879af30>,
<feelpp._alg.VectorPetscDouble object at 0x7f541870e8f0>,
<feelpp._alg.VectorPetscDouble object at 0x7f541870ecb0>,
<feelpp._alg.VectorPetscDouble object at 0x7f541870ec70>]]]

These matrices and vectors can be converted to petsc4py.Mat and petsc4py.Vec to be used by PETSc functions.
In this cell, we initialize a parameter from the model and print its values.

[15]: Dmu = model.parameterSpace()
mu = Dmu.element(True, False)
print("mu =", mu)

mu = [4.37e+00,2.92e+00,1.17e+00,8.75e+05,5.28e+05,2.83e+01]

Now we get the decomposition of A(µ) and F (µ) : A(µ) =
QA∑
q=1

βAq (µ)Aq, F (µ) =
QF∑
q′=1

βFq′(µ)Fq′

[16]: [betaA, betaF] = model.computeBetaQm(mu)
print("betaA =", betaA)
print("betaF =", betaF)

betaA = [[11.719017613745706, -2.7795543208276716, 0.0827590509751109, 0.005061081396828813, 0.
↪→0014525863914981914]]
betaF = [[[300.0, 1.1159318846864676, -0.20075874676301833, 0.20146295707845197]]]
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