Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Méthodes de réduction d'ordre pour un milieu poreux-élastique et couplage avec un système EDO

Thomas Saigre

dirigé by Christophe Prud'homme

Cemosis – IRMA

26 août 2021

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Table des matières

Contexte du stage

Modélisation

Discrétisation spatiale : Méthode HDG

Discrétisation temporelle : Méthode de splitting

Reduced Order Methods

Conclusion

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Contexte						

Contexte

Avec sa connexion spéciale avec le cerveau, l'œil permet d'avoir accès à des données cliniques de façon non invasives pour permettre le diagnostic de certaines maladies, dont des maladies neuro-dégénératives.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Contexte						
Contexte						

- Projet Eye2brain porté par la plateforme Cemosis : développer un jumeau numérique de l'œil pour permettre une interprétation assistée par ordinateur de données cliniques
- Thèse de Lorenzo Sala¹ : Modélisation mathématique et simulation de flux sanguin oculaires et leurs interactions. Trois niveaux d'architectures mathématiques ont été développés pour l'OMVS

¹Lorenzo Sala. "Mathematical modelling and simulation of ocular blood flows and their interactions". Theses. Université de Strasbourg, Sept. 2019. URL: https://tel.archives-ouvertes.fr/tel-02284233.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Modélisation

Contexte du stage	Modélisation	HDG S	plitting	ROM	Conclusion	References
Modélisation géométrique		Modélisation physiq				

Génération automatique de géométrie avec SALOME à partir d'un fichier STEP :

Figure 1: Geométrie de l'œil

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Modélisation géométrique						

- Génération automatique de géométrie avec SALOME à partir d'un fichier STEP :
- Cornée
- Iris
- Sclera
- Lentille
- Ligament
- Humeur acqueuse [Che21]
- Humeur vitrée

Figure 1: Avant de l'œil

Contexte du stage	Modélisation	HDG Spl	itting	ROM	Conclusion	References
Modélisation géométrique	Vérifications sur le maillage	Modélisation physiqu	e Modèle 0D	Équations de Darcy	Test linéaire	

Génération automatique de géométrie avec SALOME à partir d'un fichier STEP :

Figure 1: Arrière de l'œil

- Choroïde
- Rétine
- Lamina
- Artère
- Veine
- Nerf optique
- Pia

Contexte du stage	Modélisation	HDG Sp	litting	ROM	Conclusion	References
Modélisation géométrique						

Génération automatique de géométrie avec SALOME à partir d'un fichier STEP :

Figure 1: Anatomie de l'arrière de l'œil et réseau valsculaire

Contexte du stage	Modélisation	HDG Sp	litting	ROM	Conclusion	References
Modélisation géométrique						

Génération automatique de géométrie avec SALOME à partir d'un fichier STEP :

Figure 1: Maillage de la géométrie

Contexte du stage Modélisation HDG Splitting ROM Conclusion References Modélisation géométrique Vérifications sur le maillage Modélisation physique Modèle OD Équations de Darcy Test linéaire

Laplacian

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$
(1)

Application feelpp_qs_laplacian_3d : on configure la solution voulue u. f et g sont calculés par le programme.

Figure 2: Convergence of the errors, with $u(x, y, z) = \cos(\pi x) \sin(\pi y) \cos(\pi z)$

 Contexte du stage
 Modélisation
 HDG
 Splitting
 ROM
 Conclusion
 References

 Modélisation géométrique
 Vérifications sur le maillage
 Modélisation physique
 Modèle 0D
 Équations de Darcy
 Test linéaire

Validation

Équation de la chaleur :

$$\rho_i C_{p,i} \frac{\partial T_i}{\partial t} = \nabla \cdot (k_i \nabla T_i)$$
⁽²⁾

where :

- i indice du volume (Cornea, VitreousHumor...),
- T_i [K] temperature dans le volume volume i,
- ▶ t [s] temps. On condidère d'aborde un cas stationnaire, donc $\frac{\partial T_i}{\partial t} = 0$,
- ▶ k_i [W m⁻¹ K^{-1}] conductivité thermique, ρ_i [kg m⁻³] est la densité et $C_{p,i}$ [J kg⁻¹ K^{-1}] la chaleur spécifique.

Contexte du stage	Modélisation	HDG Sp	litting	ROM	Conclusion	References
	Vérifications sur le maillage					

Validation

Figure 3: Comparaison des résultats

²Ean-Hin Ooi and Eddie Yin-Kwee Ng. "Simulation of aqueous humor hydrodynamics in human eye heat transfer". In: Computers in Biology and Medicine 38.2 (2008), pp. 252-262. Thomas Saigre (Cemosis – IRMA) Stage M2

Modélisation physique

• Étude de modèles d'EDP (3D+t) couplée avec une EDO $(0D+t)^3$

³Silvia Bertoluzza et al. "A HDG method for elliptic problems with integral boundary condition: Theory and Applications". 2021.

Modélisation physique

• Étude de modèles d'EDP (3D+t) couplée avec une EDO $(0D+t)^3$

$$\begin{cases} \underline{j} + \mathcal{K} \nabla p = 0 & \text{dans } \Omega \times]0, T[\\ \frac{\partial \overline{p}}{\partial t} + \nabla \cdot \underline{j} = f & \text{dans } \Omega \times]0, T[& \frac{d\Pi}{dt} = \underline{\underline{A}}\Pi + \begin{bmatrix} Q_I \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{\Pi_{\text{out}}}{R_{\text{out}}} \end{bmatrix}$$
(2)

Avec la condition d'interface (IBC)

$$\int_{\Sigma_{|\text{ateral}}} \hat{j} \cdot \underline{n} = Q_I \qquad p \text{ est constant } \Sigma_{|\text{ateral}} : U_I = p \text{ sur } \Sigma_{|\text{ateral}}$$
(3)

Et les conditions aux bords :

$$p = p_{hole} \operatorname{sur} \Sigma_{hole} \qquad \underline{j} \cdot \underline{n} = 0 \operatorname{sur} \Sigma_{top} \cup \Sigma_{bottom}$$
 (4)

³Silvia Bertoluzza et al. "A HDG method for elliptic problems with integral boundary condition: Theory and Applications". 2021.

Functional Mock-Up Unit

Pour simuler un modèle 0D : OpenModelica ou Dymola pour créer un modèle mo, que l'on peut simuler avec Feel++.

Figure 4: Circuit pour Dymola

Functional Mock-Up Unit

Pour simuler un modèle 0D : OpenModelica ou Dymola pour créer un modèle mo, que l'on peut simuler avec Feel++.

Figure 4: Circuit pour Dymola

Équations de Darcy avec IBC

Équations décrivant le mouvement dans un milieu poreux.

Soit Ω un ouvert borné de \mathbb{R}^d , avec $d \in \{2,3\}$. On note Γ la frontière de Ω ,

partitionée en trois sous-ensembles disjoints : Γ_D , Γ_N et Γ_I . Le problème à résoudre est : trouver $j \in H(\text{div}, \Omega)$ et $p \in L^2(\Omega)$ tels que :

$$\underline{j} + \mathcal{K} \cdot \nabla p = 0 \qquad \text{in } \Omega \qquad (5a)$$
$$\partial_t p + \nabla \cdot j = f \qquad \text{in } \Omega \qquad (5b)$$

Équations de Darcy avec IBC

Équations décrivant le mouvement dans un milieu poreux.

Soit Ω un ouvert borné de \mathbb{R}^d , avec $d \in \{2,3\}$. On note Γ la frontière de Ω ,

partitionée en trois sous-ensembles disjoints : Γ_D , Γ_N et Γ_I . Le problème à résoudre est : trouver $j \in H(\operatorname{div}, \Omega)$ et $p \in L^2(\Omega)$ tels que :

$$\underline{j} + \mathcal{K} \cdot \nabla p = 0 \qquad \text{in } \Omega \qquad (5a)$$
$$\partial_t p + \nabla \cdot \underline{j} = f \qquad \text{in } \Omega \qquad (5b)$$

$$\partial_t p + \nabla \cdot \underline{j} = r$$
 Iff 32

avec ces conditions aux bords :

▶
$$p = g_D \text{ sur } \Gamma_D$$

▶ $\underline{j} \cdot \underline{n} = g_N \text{ sur } \Gamma_N$
▶ $p(\underline{X}) = p \text{ sur } \Gamma_I$

où l_{target} est une constante. La solution p est constante sur Γ_l

Contexte du stage	Modélisation	HDG S	plitting	ROM	Conclusion	References
					Test linéaire	

Test linéaire

Figure 5: Simple 3D - 0D model

Contexte du stage Modélisation HDG Splitting ROM Conclusion References Modélisation géométrique Vérifications sur le maillage Modélisation physique Modèle 0D Équations de Darcy Test linéaire

Test linéaire

Contexte du stage Modélisation HDG Splitting ROM Conclusion References Modélisation géométrique Vérifications sur le maillage Modélisation physique Modèle 0D Équations de Darcy Test linéaire

Test linéaire

On pose $p(\underline{X}, t) = \alpha + \beta xt$ for $\underline{X} = (x, y, z) \in \Omega$ and $t \ge 0$, et $\mathcal{K} = kI$. L'équation de Darcy equation (see 5)

$$\frac{1}{M}\frac{\partial p}{\partial t} + \nabla \cdot \underline{j} = f \qquad \underline{j} + k\nabla p = \underline{0}$$
(6)

donne :

$$\underline{j} = -k \begin{bmatrix} \beta t \\ 0 \\ 0 \end{bmatrix} \qquad f = \beta x \tag{7}$$

 Contexte du stage
 Modélisation
 HDG
 Splitting
 ROM
 Conclusion
 References

 Modélisation géométrique
 Vérifications sur le maillage
 Modélisation physique
 Modèle 0D
 Équations de Darcy
 Test linéaire

Test linéaire

Conditions aux bords :

- Sur Γ_N , $\underline{j} \cdot \underline{n} = 0$, car $\underline{n} = [0, 0, -1]^T$, $[0, 1, 0]^T$, $[0, 0, 1]^T$, $[0, -1, 0]^T$ dépendant de la face de Γ_N ,
- Sur Γ_G , $p = \alpha$,

► Sur
$$\Gamma_I$$
, $\int_{\Gamma_I} \underline{j} \cdot \underline{n} = \int_{\Gamma_I} \begin{bmatrix} -\beta t \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = -L^2 k \beta t =: Q_I$; et $p|_{\Gamma_I} = \alpha + \beta H t =: U_I$

Comme $Q_I(t) = \frac{U_I - \Pi_1}{R_b}$, on obtient $\Pi_1 = P_I - Q_I = \alpha + \beta (H + R_b L^2 k) t$. Avec la loi de Kirchhoff sur le nœud Π_1 , on trouve :

$$\Pi_{\text{out}} = \alpha + \beta \left[Ht + L^2 kt(R_b - R_{\text{out}}) - C_b R_{\text{out}}(H + R_b L^2 k) \right]$$

Résultats de la toolbox Feel++

Figure 5: Comparaison du potential

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
HDG Formulation variationn						

Discrétisation spatiale : Méthode HDG

Hybridizable Discontinuous Galerkin⁴

Definition

La méthode *HDG* est une méthode éléments finis où les espaces de fonctions considérés ne sont pas continus (d'un élément à l'autre).

- Cela implique un nombre de degrés de liberté plus grand que dans les méthodes EF usuelles
- On impose faiblement la continuité de la solution sur les bords des éléments du maillage

⁴Silvia Bertoluzza et al. "A HDG method for elliptic problems with integral boundary condition: Theory and Applications". 2021.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
HDG Formulation variationr						

Équation de Darcy (stationnaire pour simplifier)

On part de cette équation du second ordre :

$$-\nabla \cdot (\mathcal{K} \nabla p) = f \qquad \text{sur } \Omega \tag{6}$$

On pose $\underline{j}=-\mathcal{K}
abla p$, ce qui donne ce système d'équations :

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
HDG Formulation variation						

Équation de Darcy (stationnaire pour simplifier)

On part de cette équation du second ordre :

$$-\nabla \cdot (\mathcal{K} \nabla p) = f \qquad \text{sur } \Omega \tag{6}$$

On pose $j=-\mathcal{K}
abla p$, ce qui donne ce système d'équations :

$$\begin{cases} \underline{j} + \mathcal{K} \nabla p = 0 & \text{sur } \Omega \\ \nabla \cdot \underline{j} = f & \text{sur } \Omega \end{cases}$$

d'inconnues *p* et *j*.

(7)

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
HDG Formulation variation n	elle Stratégie de résolutio					

Formulation variationnelle

(en intégrant le système précédent, puis en faisant une intégration par parties)

Soit $\overline{\varphi} \in H^{1/2}(\Omega)$ telle que $\overline{\varphi}|_{\Gamma_D} = 0$ et $\overline{\varphi}|_{\Gamma_I} = 1$. On considère le problème variationnel suivant :

trouver
$$\underline{j} \in H(\operatorname{div}, \Omega), p \in L^2(\Omega)$$
 et $\widehat{p} \in \operatorname{span} \langle \overline{\varphi} \rangle \oplus H_{00}^{1/2}(\Gamma_N)$, tel que $\forall \underline{\nu} \in H(\operatorname{div}, \Omega), w \in L^2(\Omega)$ et $\mu \in \operatorname{span} \langle \overline{\varphi} \rangle \oplus H_{00}^{1/2}(\Gamma_N)$, on ait :

$$\begin{split} (\mathcal{K}^{-1}\underline{j},\underline{v})_{\Omega} - (p,\nabla \cdot \underline{v})_{\Omega} + \langle \widehat{p},\underline{v} \cdot \underline{n} \rangle_{\Gamma} &= 0 \\ (\nabla \cdot \underline{j},w)_{\Omega} &= (f,w)_{\Omega} \\ \langle \underline{j} \cdot \underline{n},\mu \rangle_{\Gamma_{N} \cup \Gamma_{I}} &= \langle g_{N},\mu \rangle_{\Gamma_{N}} + l_{\mathsf{target}} |\Gamma_{I}|^{-1} \langle \mu,1 \rangle_{\Gamma_{I}} \\ \langle \widehat{p},\mu \rangle_{\Gamma_{D}} &= \langle g_{D},\mu \rangle_{\Gamma_{D}} \end{split}$$

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
HDG Formulation variation network	elle Stratégie de résolutio					

Espaces de fonctions

On introduit ces espaces de fonctions :

$$\underline{V}_h = \prod_{K \in \mathcal{T}_h} \underline{V}(K)$$
$$W_h = \prod_{K \in \mathcal{T}_h} W(K)$$

avec $\underline{V}_k(K) = \left(\mathbb{P}_k(K)\right)^d$ et $W_k(K) = \mathbb{P}_k(K)$

On voit que les fonctions de \underline{V}_h et W_h ne sont pas forcément continues d'un élément à l'autre.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
HDG Formulation variation network	elle Stratégie de résolutio					

Espaces de fonctions

On introduit ces espaces de fonctions :

$$\widetilde{M}_{h} = \left\{ \mu \in L^{2}(\mathcal{F}_{h}) \Big| \mu|_{F} \in \mathbb{P}_{k}(F) \; \forall F \in \mathcal{F}_{h}^{0} \cup \mathcal{F}_{h}^{\Gamma_{N}}, \mu|_{\Gamma_{D} \cup \Gamma_{I}} = 0 \right\}$$

$$M_{h}^{*} = \left\{ \mu \in L^{2}(\mathcal{F}_{h}) \Big| \mu|_{\Gamma_{I}} \in \mathbb{R} \; (\mu \text{ est constant}), \mu|_{\mathcal{F}_{h} \setminus \Gamma_{I}} = 0 \right\} \text{ (on a dim } M_{h}^{*} = 1)$$

$$M_{h} = M_{h}^{*} \oplus \widetilde{M}_{h}$$

Les fonctions de M_h sont discontinues sur les sommets de $\mathcal{F}_h \setminus \mathcal{F}_h^{\Gamma_l}$, et univaluées sur les arêtes.

Ces fonctions servent de connecteur entre les éléments adjecents.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
HDG Formulation variationn	elle Stratégie de résolut					

Formulation variationnelle discrète

On définit le *flux numérique normal* sur ∂K par :

$$\hat{\underline{j}}_{K}^{\partial K} \cdot \underline{\underline{n}}_{\partial K} = \underline{j}_{h}^{K}|_{\partial K} \cdot \underline{\underline{n}}_{\partial K} + \tau_{\partial K} \left(p_{h}^{K}|_{\partial K} - \widehat{p}_{h}|_{\partial K} \right)$$

 $(\tau_{\partial K} \ge 0 \text{ paramètre de stabilisation, qui peut dépndre de la face } F \in \partial K)$ Trouver $\underline{j}_h \in \underline{V}_h$, $p_h \in W_h$ et $\hat{p}_h \in M_h$ tels que $\forall \underline{v}_h \in \underline{V}_h$, $\forall w_h \in W_h$, $\forall \mu_h \in M_h$:

$$\begin{split} \sum_{K \in \mathcal{T}_{h}} \left[\left(\mathcal{K}^{-1} \underline{j}_{h}^{K}, \underline{v}_{h}^{K} \right)_{K} - \left(p_{h}^{K}, \nabla \cdot \underline{v}_{h}^{K} \right)_{K} + \left\langle \widehat{p}_{k}^{\partial K}, \underline{v}_{h}^{K} \cdot \underline{n}_{\partial K} \right\rangle_{\partial K} \right] &= 0 \\ \sum_{K \in \mathcal{T}_{h}} \left[- \left(\underline{j}_{h}^{K}, \nabla w_{h}^{K} \right)_{K} + \left\langle \widehat{j}_{h}^{\partial K} \cdot \underline{n}_{\partial K}, w_{h}^{K} \right\rangle_{\partial K} \right] &= \sum_{K \in \mathcal{T}_{h}} \left(f, w_{h}^{K} \right)_{K} \\ \sum_{K \in \mathcal{T}_{h}} \left\langle \widehat{j}_{h}^{\partial K} \cdot \underline{n}_{\partial K}, \mu_{h} \right\rangle_{\partial K} &= \langle g_{N}, \mu_{h} \rangle_{\Gamma_{N}} + l_{\text{target}} \frac{1}{|\Gamma_{l}|} \langle \mu_{h}, 1 \rangle_{\Gamma_{l}} \end{split}$$

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
	elle Stratégie de rése	olution				

Stratégie de résolution

- ▶ \underline{j}_h et p_h sont les approximations de \underline{j} et p à l'intérieur des éléments $K \in \mathcal{T}_h$, et \hat{p}_h^K est l'approximation de la trace de p_h sur les faces de \mathcal{F}_h
- Condensation statique : les équations discrètes sont vraies à l'intérieur de chaque K ∈ T_h et peuvent être résolues sur chaque K pour éliminer j^K_h et p^K_h en faveur de p^{∂K}_h.
- En combinant cette procédure à la définition du flux numérique normal $\hat{j}_{h}^{\partial K}$, on peut exprimer $\hat{j}_{h}^{\partial K}$ en fonction de $\hat{p}_{h}^{\partial K}$ uniquement.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Discrétisation temporelle : Méthode de splitting

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Algorithme de splitting

- Un couplage 3D 0D peut introduire des instablités numériques
- On va étudier l'opérateur de splitting⁵
 - La différence d'échelle ne va poser aucun problème
 - La formulation HDG supporte la condition intégrale au bord (IBC) sans aucune sous-itération
- On aura un couplage naturel entre le modèle 3D et le modèle 0D.

⁵Silvia Bertoluzza et al. "A HDG method for elliptic problems with integral boundary condition: Theory and Applications". 2021.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Opérateur splitting

- Semi-discrétisation en temps pour maintenir la flexibilité lors de l'application de la méthode HDG dans le problème temporel
- ▶ On pose $t^n = n \Delta t$ pour $n \leq 0$, et on note φ^n la valeur de $\varphi(t^n)$.

À partir de p^n et $\underline{\Pi}^n$, pour passer de t^n à t^{n+1} , on résoud deux étapes :

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	Reterences
Opérateur sp	litting : Étap	e 1				

Trouver j, p et $\underline{\Pi}$ tels que :

avec les conditions aux bords $p = p_{hole}$ sur Σ_{hole} et $\underline{j} \cdot \underline{n} = 0$ sur $\Sigma_{top} \cup \Sigma_{bottom}$; les conditions à l'interface $\int_{\Sigma_{lateral}} \underline{j} \cdot \underline{n} = Q_I$, p est constant sur $\Sigma_{lateral}$ et $U_I = p$ sur $\Sigma_{lateral}$

et les conditions initiales
$$p(t^n) = p^n$$
, $\underline{\Pi}(t^n) = \underline{\Pi}^n$.
On pose alors $p^{n+\frac{1}{2}} = p(t^{n+1})$, $\underline{\Pi}^{n+\frac{1}{2}} = \underline{\Pi}(t^{n+1})$ et $\underline{j}^{n+\frac{1}{2}} = \underline{j}(t^{n+1})$.

Opérateur splitting : Étape 2

Trouver p et $\underline{\Pi}$ tels que :

$$\frac{\partial p}{\partial t} = 0 \qquad \qquad \text{dans } \Omega \times]t^{n}, t^{n+1}[\qquad (8a)$$
$$\frac{\mathrm{d}\Pi}{\mathrm{d}t} = \underline{\underline{A}} \underline{\underline{\Pi}} + \underline{\underline{s}} \qquad \qquad \text{dans }]t, t^{n+1}[\qquad (8b)$$

avec les conditions initiales $p(t^n) = p^{n+\frac{1}{2}}$ et $\underline{\Pi}(t^n) = \underline{\Pi}^{n+\frac{1}{2}}$. On pose alors $p^{n+1} = p(t^{n+1})$, $\underline{\Pi}^{n+1} = \underline{\Pi}(t^{n+1})$ et $\underline{j}^{n+1} = \underline{j}(t^{n+1})$.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Stabilité						

Théorème : stabilité⁶

On considère le modèle de couplage 3D – 0D, auquel on ajoute certaines hypothèses. Alors l'algorithme donné par les étapes 1 et 2 est inconditionnellement stable.

ldée de preuve : Si \mathcal{E}_1^n désigne l'énergie totale du système à l'étape 1 au temps t^n (idem \mathcal{E}_2^n), alors on montre :

1.
$$\mathcal{E}_1^{n+\frac{1}{2}} \leq \mathcal{E}_1^n$$
 2. $\mathcal{E}_2^{n+1} \leq \mathcal{E}_2^{n+\frac{1}{2}}$

3. Comme la condition initiale de l'étape 2 coïncide avec la solution finale de l'étape 1, il en résulte que : $\mathcal{E}_2^{n+1} \leqslant \mathcal{E}_1^{n+\frac{1}{2}} = \mathcal{E}_2^{n+\frac{1}{2}} \leqslant \mathcal{E}_1^n$

D'où la stabilité inconditionnelle.

⁶Lorenzo Sala. "Mathematical modelling and simulation of ocular blood flows and their interactions". Theses. Université de Strasbourg, Sept. 2019. URL: https://tel.archives-ouvertes.fr/tel-02284233.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Ordre de convergence⁷

Ordre de convergence

Cet algorithme converge à l'ordre 1 en temps.

Algorithme d'ordre 2

Il est possible d'obtenir un algorithme d'ordre 2 en temps, en utilisant une forte symétrisation et en utilisant des algorithmes des discretisation d'ordre au moins 2 en temps

⁷Roland Glowinski. "Finite element methods for incompressible viscous flow". In: Numerical Methods for Fluids (Part 3). Vol. 9. Handbook of Numerical Analysis. Elsevier, 2003, pp. 3-1176. DOI: https://doi.org/10.1016/S1570-8659(03)09003-3. URL: https://www.sciencedirect.com/science/article/pii/S1570865903090033.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Reduced Order Methods

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Thermal-fin EIM	A posteriori error estimation	Algorithme Greedy	Résultats			

Modèle thermique : thermal fin

Figure 6: Géométrie du thermal fin

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Thermal-fin EIM	A posteriori error estimation	Algorithme Greedy	Résultats			

Modèle thermique : thermal fin

Figure 6: Géométrie avec différents paramètres

Modèle thermique : thermal fin

Génération automatique des fichiers de configuration Feel++ avec liquid

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Thermal-fin EIM A						

Empirical Interpolation Method

▶ On cherche à résoudre un problème du type : *Trouver* $u(\underline{\mu}) \in V$ *tel que* $\forall v \in V$, $a(u(\underline{\mu}), v) = f(v, \underline{\mu})$, avec le paramètre $\underline{\mu} \in D \subset \mathbb{R}^d$.

⁸Romain Hild. "Optimization and control of high fields magnets". Theses. Université de Strasbourg, Nov. 2020. URL: https://tel.archives-ouvertes.fr/tel-03025312.

Empirical Interpolation Method

▶ On cherche à résoudre un problème du type : *Trouver* $u(\underline{\mu}) \in V$ *tel que* $\forall v \in V$, $a(u(\underline{\mu}), v) = f(v, \underline{\mu})$, avec le paramètre $\underline{\mu} \in D \subset \mathbb{R}^d$.

• On décompose $a(u, v; \underline{\mu}) = \sum_{q=0}^{Q} \theta^{q}(\underline{\mu}) a^{q}(u, v)$, avec θ^{q} en fonction du paramètre $\underline{\mu}$, et a^{q} independant de μ . Mais cette décomposition n'est pas tout le temps possible.

⁸Romain Hild. "Optimization and control of high fields magnets". Theses. Université de Strasbourg, Nov. 2020. URL: https://tel.archives-ouvertes.fr/tel-03025312.

Empirical Interpolation Method

▶ On cherche à résoudre un problème du type : *Trouver* $u(\underline{\mu}) \in V$ *tel que* $\forall v \in V$, $a(u(\mu), v) = f(v, \mu)$, avec le paramètre $\mu \in D \subset \mathbb{R}^d$.

• On décompose $a(u, v; \underline{\mu}) = \sum_{q=0}^{Q} \theta^{q}(\underline{\mu}) a^{q}(u, v)$, avec θ^{q} en fonction du paramètre $\underline{\mu}$,

et a^q independant de μ . Mais cette décomposition n'est pas tout le temps possible.

On peut utiliser la Empirical Interpolation Method (EIM)⁸, qui consitste à approximer une fonction paramétrisée par une somme de termes affines :

$$g(x,\underline{\mu}) \approx g_{\mathcal{M}}(x,\underline{\mu}) = \sum_{m=1}^{\mathcal{M}} \theta_{g,\mathcal{M}}^{m}(\underline{\mu}) q_{m}(x)$$
(9)

⁸Romain Hild. "Optimization and control of high fields magnets". Theses. Université de Strasbourg, Nov. 2020. URL: https://tel.archives-ouvertes.fr/tel-03025312.

Figure 6: Pipeline for Model Order Reduction

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
	A posteriori error estimation					

A posteriori error estimation

On a ces décompositions :

$$A(\underline{\mu}) = \sum_{q=1}^{Q_a} \beta_A^q A^q \qquad F(\underline{\mu}) = \sum_{p=1}^{Q_f} \beta_F^p F^p$$
(10)

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
	A <i>posteriori</i> error estimation					

A posteriori error estimation

On a ces décompositions :

$$A(\underline{\mu}) = \sum_{q=1}^{Q_a} \beta_A^q A^q \qquad F(\underline{\mu}) = \sum_{p=1}^{Q_f} \beta_F^p F^p$$
(10)

L'erreur vérifie :

$$(\widehat{e}(\underline{\mu}), \mathbf{v})_{X} = \sum_{p} \beta_{F}^{p}(\underline{\mu}) f^{q}(\mathbf{v}) - \sum_{q} \sum_{n} \beta_{A}^{q}(\underline{\mu}) u_{N}^{n}(\underline{\mu}) a^{q}(\xi^{n}, \mathbf{v}) \quad \forall \mathbf{v} \in X$$
(11)

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
	A posteriori error estimation					

A posteriori error estimation

On a ces décompositions :

$$A(\underline{\mu}) = \sum_{q=1}^{Q_a} \beta_A^q A^q \qquad F(\underline{\mu}) = \sum_{p=1}^{Q_f} \beta_F^p F^p$$
(10)

L'erreur vérifie :

$$(\widehat{e}(\underline{\mu}), v)_X = \sum_p \beta_F^p(\underline{\mu}) f^q(v) - \sum_q \sum_n \beta_A^q(\underline{\mu}) u_N^n(\underline{\mu}) a^q(\xi^n, v) \quad \forall v \in X$$
(11)

$$\begin{aligned} \left\|\widehat{e}(\underline{\mu})\right\|_{X}^{2} &= \sum_{p} \sum_{p'} \beta_{F}^{p} \beta_{F}^{p'} (\mathcal{S}^{p}, \mathcal{S}^{p'})_{X} + 2 \sum_{p} \sum_{q} \sum_{n} \beta_{F}^{p} \beta_{A}^{q} u_{N}^{n} (\mathcal{S}^{p}, \mathcal{L}^{n,q})_{X} \\ &+ \sum_{q} \sum_{n} \sum_{q'} \sum_{n'} \beta_{A}^{q} \beta_{A}^{q'} u_{N}^{n} u_{N}^{n'} (\mathcal{L}^{n',q'}, \mathcal{L}^{n,q})_{X} \end{aligned}$$
(12)

 Contexte du stage
 Modélisation
 HDG
 Splitting
 ROM
 Conclusion
 References

 Thermal-fin
 EIM
 A posteriori error estimation
 Algorithme Greedy
 Résultats

Algorithme Greedy

Algorithme 1 : Greedy algorithm

$$\begin{array}{l} \text{Input} : \mu_0 \in D \text{ et } \varXi_{\text{train}} \subset D \\ S \leftarrow [\mu_0] \\ \text{tant que } \Delta_N^{max} > \varepsilon \text{ faire} \\ & \quad u(\mu^*) \leftarrow \text{ solution FE solution, avec } S \text{ comme échantillon pour générer les BR} \\ & \quad W_N \leftarrow \{\xi = u(m^*)\} \cup W_{N-1} \\ & \quad \mu^* \leftarrow \arg\max \Delta_N(\mu) \text{ (and } \Delta_N^{\max} \leftarrow \max_{\mu \in \varXi_{\text{train}}} \Delta_N(\mu)) \\ & \quad Ajouter \ \mu^* \text{ to } S \\ \text{fin} \\ \text{Output : sample } S, \text{ base réduite } W \end{array}$$

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
		Algorithme Greedy				

Aspects d'implémentation

- Utilisation des vecteurs et matrices PETSc pour les calculs offline, utilisés dans Feel++.
- Modules PETSc4Py pour utiliser ces objets dans Python.
- Module NumPy pour les calculs online.

Résultats : Temps d'exécution

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
			Résultats			

Résultats : Erreurs relatives

Conclusion et perspectives

- Analyse de sensibilité à partir des modèles réduits pour calculer les indices de Sobol
- Un travail simillaire a déjà été réalisé sur el modèel 0D, sans utiliser de bases réduites⁹
- Exemple de paramètres :
 - Physiologiques : pression sanguine, propriété physique des tissus
 - Géométrique : taille des certaines parties, forme générale de l'œil
- ► Le but est de mettre en place des modèle plus précis et plus efficaces

⁹Christophe Prud'homme, Lorenzo Sala, and Marcela Szopos. "Uncertainty propagation and sensitivity analysis: results from the Ocular Mathematical Virtual Simulator". In: *Mathematical Biosciences and Engineering* 18.3 (2021), pp. 2010–2032. ISSN: 1551-0018. DOI: 10.3934/mbe.2021105.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References
Bibliography I						

- Silvia Bertoluzza et al. "A HDG method for elliptic problems with integral boundary condition: Theory and Applications". 2021.
 - Lilian Cheraifi. Private Communication. 2021.
 - Roland Glowinski. "Finite element methods for incompressible viscous flow". In: Numerical Methods for Fluids (Part 3). Vol. 9. Handbook of Numerical Analysis. Elsevier, 2003, pp. 3-1176. DOI: https://doi.org/10.1016/S1570-8659(03)09003-3. URL: https:// www.sciencedirect.com/science/article/pii/S1570865903090033.

Romain Hild. "Optimization and control of high fields magnets". Theses. Université de Strasbourg, Nov. 2020. URL: https://tel.archives-ouvertes.fr/tel-03025312.

Contexte du stage	Wodelisation	HDG	Splitting	ROM	Conclusion	References
Bibliography	·					

Ean-Hin Ooi and Eddie Yin-Kwee Ng. "Simulation of aqueous humor hydrodynamics in human eye heat transfer". In: *Computers in Biology and Medicine* 38.2 (2008), pp. 252–262.

> Daniele Prada et al. "Autoregulation and neurovascular coupling in the optic nerve head". In: Survey of Ophthalmology 61.2 (2016), pp. 164-186. ISSN: 0039-6257. DOI: https://doi.org/10.1016/j.survophthal.2015.10.004. URL: https://www.sciencedirect.com/science/article/pii/ S0039625715001824.

Christophe Prud'homme, Lorenzo Sala, and Marcela Szopos. "Uncertainty propagation and sensitivity analysis: results from the Ocular Mathematical Virtual Simulator". In: *Mathematical Biosciences and Engineering* 18.3 (2021), pp. 2010–2032. ISSN: 1551-0018. DOI: 10.3934/mbe.2021105.

Contexte du stage	Modélisation	HDG	Splitting	ROM	Conclusion	References

Bibliography III

Lorenzo Sala. "Mathematical modelling and simulation of ocular blood flows and their interactions". Theses. Université de Strasbourg, Sept. 2019. URL: https://tel.archives-ouvertes.fr/tel-02284233.