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Chapter 1

Introduction & Context

The internship is taking place from the 1st of June until August 4, in the "Unité Mixte de Recherche
en Acoustique Environnementale (UMRAE)" of the Cerema Lab of Strasbourg. The internship
tutor is Clément Piegay, researcher at the UMRAE.

1.1 Context

Bio-based materials are an increasing resource in the market of building isolation, because of the
introduction of the concept of environmental performance of construction products in the future
Environmental Regulation 2020. Those materials, such as vegetal wool (hemp wool, flax wool,
cellulose wadding, ....), have the same acoustic performance as the synthetic ones, like rock wool
or glass wool [Glé 2013],[Piegay et al.2018], but are more adapted to environmental preservation.

Those bio-based materials are porous and made of fiber, so while taking into account the
specificity of their microstructure, a micro-macro homogenization model based on a cylindrical
geometry has recently been developed [Piegay et al.2021]. It is based on a coupling between the
homogenization of periodic media (HPM) and the self-consistent homogenization method (SCM).
This method leads to a direct analytical relation between macroscopic properties (sound absorption
coefficient) and parameters of their microstructure, such as an equivalent fiber radius value.

The issue with this approach is that the relations contain modified Bessel functions of the first
kind, which lead to indeterminate forms when calculating the limits at low and high frequencies.
However, those limits are needed to determine the specific parameters of material pore network
geometry, such as the resistivity and the tortuosity of the material.

1.2 Presentation of the company

Cerema, Centre d’Etudes et d’expertise sur les Risques, I’Environnement, la Mobilité et I’ Aménagement,
is a public establishment with administrative status. It has 2,764 employees working in 21 labora-
tories in France and 3 technical departments.

It operates on the national territory but also at European level. Indeed, Cerema has partici-
pated in about forty European projects since its creation. Generally speaking, Cerema’s objective
is sustainable development and its desire is to design a better future for all territories.



The 9 fields of action of Cerema are :

e Well-being and reduction of nuisances

e Mobility and transport

Transport infrastructures

e Land use planning and cohesion

City and urban strategies

e Energy transition and climate

The Strasbourg Laboratory, which is part of the EST Territorial Directorate, is composed of
different groups:

e Geotechnics, Earthworks, Pavements Group

e Engineering structures group

Building, Construction and Real Estate Group

Acoustics Group

Physical Methods Group

1.3 Internship Subject

This internship, which constitutes a first introduction to the research environment, aims to establish
relationships between characteristic geometric parameters of pore networks within materials with
parameters related to their microstructure and fiber morphology.

These parameters are related to the acoustic dissipation phenomena within the materials, repre-
sented by intrinsic quantities named visco-inertial dynamic permeability (IT) and thermal dynamic
permeability (Z).

In the case of fibrous materials, both of these permeabilities can be expressed by mathemat-
ical relationships based on a cylindrical geometry. These relations are based on modified Bessel
functions of the 1st kind, I,, and K.

In order to establish the relationships between the pore parameters and the microstructure
parameters, it is necessary to use specific configurations of low frequencies (f tends towards 0) and
high frequencies (f tends towards infinity).

A first step is to study the Bessel functions I,, and K,, in order to remove the indeterminacies
when calculating the limits of the dynamic permeability expressions.

1.3.1 Tools

The programming language Python was used for this internship, especially SymPy, the Python
library for symbolic mathematics, as the dynamic permeability expressions are composed of mul-
tiple parameters. Moreover, the Wolfram|Alpha engine for computing answers was used to find
alternative form for small expressions.

For practical use and information sharing, Overleaf was used to show the progress of the results
and Box for the document sharing.



1.4 Presentation of the modelling approach used

In this section, the modelling method used to establish the dynamic visco-inertial and thermal
permeability relationships is presented.

1.4.1 The self-consistent homogenization method (SCM)

This modeling approach is based on a self-consistent homogenization model, which is a mathe-
matical model that allows to obtain direct analytical relationships between the parameters of the
microstructure and the macroscopic properties of materials.

It has been used in the case of granular materials (spherical geometry) in [Boutin 2000] and
also for the case of fibrous materials (cylindrical geometry) by [Berdichevsky & Cai 1993] but only
in static. The dynamic case has been developed in [Piégay 2019].

For the application of this method, it is needed to establish the equations of the behavior of the
velocity, pressure and temperature fields at the local scale and develop a generic geometric model.
Differential equations are then obtained and solved in order to determine solutions for the three
characteristic quantities within the fluid phase.

The solutions of dynamic density obtained by this method depend on several parameters and
formulas.

Milieu homogéne éqlivalent \ >\ / ”
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Figure 1.1: Representation of the cylindrical inclusion made of a solid phase included in a fluid
phase [Piégay 2019|.

First, the fiber radius, which is defined by using the porosity ¢ and the average fiber radius
Ry, is determined by this expression :

Ry _ Ry
Vi-¢ B
The porosity, noted ¢, represents the volume of the fluid phase, thus the air, contained in the

total volume of the material.
[ is the homogenization parameter in the cylindrical SCM and can be written as 8 = /1 — ¢.

R:




A sound wave propagating within a material such as plant wools causes a pressure differential
that creates a movement of the fluid phase. To characterize the nature of this movement, the viscous
boundary layer thickness is defined. Thus, at low frequency when w tends to 0, the wavelengths
are very large. The sound wave has more difficulty in penetrating the pores of the material and the
flow regime is viscous. Conversely, for high frequencies, the wavelengths are small and generate a
faster flow of the fluid, called inertial flow.

The pressure differential within the fluid phase also has an impact on temperature exchanges
with the solid phase (thermodynamic evolution). This is why the thermal boundary layer thickness
delta t is also defined.

When w tends to 0, there is an isothermal behavior (the fluid moves little, so the temperature
remains almost constant) and when w tends to oo, there is an adiabatic behavior, the fluid flows
quickly and it is considered that exchanges do not have time to occur.

The thickness of the viscous boundary layer is defined by:

W
1pow

with i the imaginary unit, u the air shear viscosity (1.85 x 107%kg.s~L.m™! at 25°C), po the
mass density of air at rest (1.284kg.m ™3 at 25°C) and w the wave pulsation.

w depends on the wave frequency and can be formulated as w = 27 f, with f the wave frequency.
And there is the thickness of the thermal boundary layer :

Ao
ipoCpw

with \g the thermal air conductivity (0.026W.m~1.K~! at 25°C), po the mass density of air at
rest, C}, the heat capacity of the air at constant pressure and w the wave pulsation.

With all of those parameters and formula, what is left is to introduce the solutions given by
the cylindrical SCM.

1.4.2 Solutions of the cylindrical SCM model

After solving the differential equation obtained from the modeling method, a solution with con-
stants is obtained. These constants are obtained by using boundary conditions.

One of these boundary conditions corresponds to the conservation of energy between the micro
and macro approaches (SCM hypothesis). This boundary condition leads to 2 solutions for the
visco-inertial dissipation phenomena. The first one corresponds to the flow approach and the
second to the pressure approach.

A third solution is possible, the zero vorticity approach. In his work [Tarnow 1997b|, [Tarnow
1997a], V. Tarnow substitutes the hypothesis of conservation of energy by a hypothesis of zero
vorticity (but this approach which is valid does not follow from the SCM model).

The SCM model gives three system of five equations, that will be resolved in order to find IT
the dynamic permeability for the three approaches of visco-inertial effects in flow, pressure and
with the assumption of zero vorticity.



In order to simplify the expression of the following solutions, four last formulas are introduced:

R
P=3,
q=PBp
, R
P=5
q = pp'

Of the five equation, four are fixed, and the last one depends on the approach :

52 (—(;13)2 + C;) + ﬁ (c211(q) — c3Ki(q)) =0
Cs

C
102 + 5%10@) + 53 Ko(g) = 0

2(% oy L _ _
0 (5= 5) ~ g () - esKap) + =0
C3
——1T —K =0
3 OR 1(p) + Pk 1(p)
The dynamic density for the flow approach :

The last equation of the system for the approach is :

1 c Cs

= |+ %IO(P) + 5 Ko(p) | +11=0
2 02 02

The analytical solution for II,, is of the form :

0 — s R2pA +26,R(BB + C)
Y U\ R2(1 + ¢)A + 20, (—2RB2E + RBF + RC + 835,G
with :

A = Iy(p)Ko(q) — To(q) Ko (p),
B = In(p)K1(q) — Lo(q)K1(q) + Li(q) Ko(p) — L1 (q)Ko(q),
C = Io(p)K1(p) — Io(9)K1(p) + 1 (p) Ko(p) — L1 (p) Ko(q),
E = Io(q)K1(p) + I (p) Ko(q),
F = 1Io(p)K1(q) + Lo(9)K1(q) + L1 (q) Ko(p) + L1 (q)Ko(q),
G = —Li(p)Ki(q) + Li(9) K1 (p)
The dynamic density for the pressure approach :
The last equation of the system for the approach is :
_ 2(5300 Co Co Cs C3

&3 + 6*2]1@) - 512)7RI2(27) - (TSKl(P) - 512}7RK2(17) =0

The analytical solution for II,, is of the form :

0 R3GE + R%5,(28G — ¢A) + 252R(BB — C)
P (¢R3E(R2 ¥ 4825,) — R25,(2 — ¢)A — 2R62(C + BF) — 285, (R2 + 453)0)



The dynamic density with the assumption of zero vorticity :
The last equation of the system for the approach is :

C2

i

C3

Ii(p) — (TgKl(p) =0

The analytical solution for II, is of the form :

9 RoE + 236,G
II, =§;
R(2— ¢)E — 200,G
The dynamic incompressibility modulus

The thermal permeability is calculated using a system of two equations :

67 +calo (q') +esKo(¢) =0
0

Gy oo
5t11(p) &Kl(p)

Solving this system of two equations with two unknowns leads to the following solutions :

o 57 K1 (p)

YT (@)K () + Ko () I (P)
6211 (p')

Cy — —

Io (¢') K1 (p') + Ko (¢') I (')
Finally, the thermal permeability = is expressed by the following relation:

= =62 (1 - % [ca (Iy (') — BI (') — 5 (K1 (p') — BK) (q’))}>

1.4.3 Parameters related to visco-inertial effects and thermal effects

Low Frequency

At low frequencies, the viscous phenomena are preponderant on the inertial phenomena. Thus,

w — 0 and lim,, 0 (1/d,) = 0.

Based on the work done by Auriault [Auriault et al. 1985] and Boutin [Boutin & Geindreau

2010], the function H is defined as the inverse of the permeability II.

H=1"!

The tortuosity is a dimensionless quantity that accounts for the tortuous path of capillaries in
a solid porous medium. The tortuosity, or tortuosity factor, is used to describe the diffusion in
this type of medium. It accounts for the reduction that affects the diffusion flow, compared to the

value it would have in a straight path.

The static intrinsic permeability IIp and the low frequency tortuosity o can be estimated from

the following relationships:



i 1
Mo ~ lim Re (g)

. ¢
Qg ™ o{;mO ((ng

The static airflow resistance (resistivity) of a material characterizes the ability of a material to

resist the flow of a fluid through its structure. It is expressed in N.m™%.s.

With the static permeability IIj, it is possible to estimate the resistivity with the following
formula :

For the thermal effects, with lim,_q (1/d;) = 0, the static thermal permeability Zy can be
estimated by the following relation :

=0 =1 =
0 wlg})()

High Frequency

At high frequencies, the inertial phenomena are preponderant on the viscous phenomena. Thus,
w — 400 and limy,— 1 o0 (1/d,) = 400.

Using the same H = II~!, the high frequency tortuosity a, can be estimated with the following
formula :

For thermal effects, lim,, oo (1/0;) = +00.

For a porous medium, it is possible at high frequency to rely on the following relation [Boutin

& Geindreau 2010]:
A
JwpoeCprZ 2 jw

By analogy with visco-inertial effects, [Champoux & Allard 1991] states the following relation,
allowing to express the thermal characteristic length A’ :

Mt w -~ 2(5,3

2w A
A’ can be determined by the following relation:

2 jw
N~ lim 204/ —22
wotoo O\ M, w

10



Chapter 2

Modified Bessel functions & first
approaches

2.1 Modified Bessel functions

The modified Bessel functions are the backbone of the different relations and formulas in this

internship.
I, (2) and K, (z) are the solutions of the differential function [Abramowitz & Stegun 1965| :

Pw dw
20" W aw . 9 2 _
z d22+zdz (z —I—v)w 0

They are called the modified Bessel functions and each is a regular function of z throughout
the z-plane cut along the negative real axis, and for fixed z( 0) each is an entire function of n.

2.1.1 Low Frequency

The modified Bessel functions can be written in these following ascending series forms :

(1 Z)k’
L(z) = (22> ;}m

wo () B ()

k=0

g (32) o

1 1 n 0o (122)]@
+ ()" <QZ> > {wk+ 1)+ +k+ 1)}m

k=0
Withn=0o0r 1 and z=p or z = Sp.
The gamma function I" correspond to, for n > 0, T'(n) = (n — 1)!, and the digamma function 1

is defined as the derivative of the gamma function ¥ (n) = 1;/((:)).

11



Before using the expressions of I and K into the permeability equations, it is necessary to
simplify these series.

Limiting forms for small arguments.
At low frequency, w, which is the pulsation of the signal, tends to 0, so both thermal and viscous
boundary layer thicknesses, §, and §; tend to oo and p (p’) or Bp (Bp’) tends to 0.
Therefore, the limiting forms for small arguments of the modified Bessel functions [Abramowitz
& Stegun 1965| can be used:

With those forms, the different expressions containing modified Bessel functions can now be
simplified quite heavily for low frequency signal :

A= Io(p)Ko(q) — Io(q) Ko(p)
= —log(Bp) + log(p)
= —log(B) + log(p) — log(p)

= | —log(8)

B = Iy(p)K1(q) — To(q)K1(q) + I (q)Ko(p) — I1(q)Ko(q)

11 Bp Bp
=5 = log(p) + =~ log(Bp)
| Bp

= 710g(5)

—-_-_"F log(p) + % log(8p)

12



F = Io(p)K1(q) + Io(q)K1(q) + 11(q) Ko(p) + 11(q)Ko(q)

11 By Bp
- % + @ -5 log(p) — o log(8p)

-2 @(log(ﬁ) + 2log(p)) ot %

_p B
28p  2p
_ b1
=535
A A )
28 |28

Asymptotic expansion.
In the case that it should be necessary to take into account more terms than in the previous
approximations, we can also express the modified Bessel functions by asymptotic expansions.
So, the approximations taken for the modified Bessel functions will be the following :

2

Iy(z) o 1+ % + o(2?)

z 2
g o)

lgm)w_bggﬂdm—e+¢ﬁ+n@%

0+

Il (I)
Ki(w) o~ o+ Tog(2)1(2) + 1 + o(a?)

0,1 and ¥ are constant given by the digamma function.

By using those in A, B,C, E, ' and GG, those expressions can be simplified :

13



A= —log(B) — p? (i * log(g) - log4(ﬁ)) + o(p?)
B= % log(8) + o(p?)
C= glog(ﬁ) + o(p?)
_ 0 _

E;+p<14¢+L+2 W) +o(p?)

2 log() 1og(§) 1
F= 24y y t e tu—0| B+ +o(p?)
G = %’ +o(p?)

With ¢« = 0.03860786 and 6 = 0.57221566

2.1.2 High Frequency

For high frequency signals, the pulsation w tends to oo, therefore both thermal and viscous bound-
ary layer thicknesses, d, and ¢; tend to 0 and p (p’) or ¢ = Bp (¢’) tends to oo.

In that case, the ascending serie forms shown before can’t be simplified like with low frequency
signals. In order to solve this problem, another form for the modified Bessel function will be used
here.

The modified Bessel functions can be written as polynomial approximations [Abramowitz &
Stegun 1965], which take the form:

Vze T Iy(x) =0.39894228 + 0.01328592(3.75 /) + 0.00225319(3.75 /)2
—0.00157565(3.75/x)% 4+ 0.00916281(3.75/x)* — 0.02057706(3.75/x)°
+0.02635537(3.75/x)° — 0.01647633(3.75/2)7 4 0.00392377(3.75/z)% + ¢

Ve I (z) =0.39894228 — 0.03988024(3.75/x)" — 0.00362018(3.75/x)?
+0.00163801(3.75/x)® — 0.01031555(3.75/2)* + 0.02282967(3.75/x)°
—0.02895312(3.75/x)® 4 0.01787654(3.75/x)" — 0.00420059(3.75/2)® + ¢

Vet Ko(z) =1.25331414 — 0.07832358(2/x) + 0.02189568(2/x)?
—0.01062446(2/x)* + 0.00587872(2/x)* — 0.00251540(2/x)°
4 0.00053298(2/x)% + ¢

Vet Ky (z) =1.25331414 4 0.23498619(2/2)" — 0.03655620(2/x)>

+0.01504268(2/x)° — 0.00780353(2/x)* + 0.00325614(2/x)°
—0.00068245(2/x)% + ¢

14



e

)

In order to simplify those expressions, it is possible to write all of them with o (

with

i1 | i | iz k1 | ks | ks
0.39894228 | 0.0498222 | 0.1495509 | 1.25331414 | 0.15664716 | 0.46997238

Then, when it is inserted in the different expressions using the modified Bessel functions, it
gives :

A e(1=B)p L ( eP )
= ki +o
VBp Py/P
e(1=B)p

i1k1+ o0 ( e )
VBp PP

o e(1=8)p L eP
== k4o —
N (p\/ﬁ)

e(1=B)p

eP
i1k1 + o
N (p\/ﬁ)
(1-B)p P
F = ¢ i1k +0( € )

VBp PP
o e(1=Pp L eP
T+ (57)

Thus A=B=-C=FE=F=-(.

15



2.2 First approach using the Limiting forms for small argu-
ments method

2.2.1 Removing the indeterminate form of the tortuosity for low fre-
quency signals.

My first approach of the problem was to work directly on the low frequency tortuosity, in order to
remove the indeterminate form. 5
=1 —H
0 ﬂﬂ%)

With the previous limiting forms for small arguments, the limits of the different 'Bessel-based’
expressions can be expressed by these following relationships :

A — log(B)

B—0

C—0

E — 400

F — +o00
—¢

G— =2

2p

However, if those limits are used directly in the tortuosity expressions, the result is an indeter-
minate form.

Instead, replacing the expressions by their approximations using the limiting form seems much
more relevant.

Flow approach.

For the tortuosity, the dynamic visco-inertial permeability is the main argument.
With this expression, the tortuosity can be expressed [Auriault et al. 1985], [Boutin & Gein-
dreau 2010] by :

i (£
Qg —3}1_% <(53H

lim i
w—0 (512)1_[,0

R2¢(1 + ¢)A — 46, ROB2E + 25, RGBF + 26, R6C + 166265G
< 54 (R2¢A + 26, RBB + 26, RC) >

lim
w—0

In order to avoid indeterminate form, the expression can be break down to small parts and
regrouped :

ap = lim
w—0

R2¢(1 + ¢)A — 45, ROB2E + 20, ROSBF + 26,RHC + 1662¢5G

< 64(R2pA + 26,RBB + 26,RC) >
X2 Y1 Y2 X3 Y3

<&m‘m+mfﬁm+m)

= lim
w—0

16



with :

Ry(-=2RgoyT=6— 2= 6)(6 — 1)) (~ o (o=rtr=s ) + %)

X1 =R%pA + 25,RBB + 26,RC =

(1—9)32
X2=R¢(1+¢)A= e <4 & <¢fl¢ﬂ> - iﬂ)
Rfcgb (f4log (ﬁ%\/ﬂ) + iw)
X3 =26,R¢C =
’ 4(1-9)
46, ROB2E 2weopg (R?wpo (log(Rf) + —1og(u)+1o§(w)+1og(po) + %) + 2ip(1 — ¢))
=T N
20, RPpBF
Y2(w) = 57?5
weo (Riwpo (2 log(Ry) — log(u) + log(w) + log(po) + log (7ﬁh) + %) — 2ip(—T— ¢ — 1))

112

166268G _ —8Siwgd?py
Lh 1

Y3(w) =

All of these expressions were calculated using SimPy (see Appendiz).

X1, X2 and X3 don’t depend on w, so they act as constants, unlike Y1, Y2 and Y3 which all
depend on w and all tend to 0 when w — 0.
The expressions can now be regrouped and used to recreate the expression of the tortuosity :

co=tmis it xr To T
_ X200 X3 0
T X1 X1 00 X1

( X2 Y1 Y2 X3 Y3)

The tortuosity for low frequency signals with a flow approach is :

Oé():O

Pressure approach

Once again, the tortuosity expression is taken with the permeability for the pressure approach :

i [
Qg 7U£1Lno ((53H

= lim ¢
w—0 (512)1_[17

i (PREE 4520, ROE — 9R?5,(2 — 6)A — 20R02C — 26RE3BF — 2086, (I + 403)G
g ( SH(R3GE + R25,(26G — pA) + 202R(BB — C)) )

w—0

With A the denominator, the expression can be rewritten as this sum :

P*R°F . 4826, 0°RPE  R%0,(2— 9)A  20RS2C  20R6BF  2085,(R* +40%)G
A A A A A A

17



with :

A = §4(R3¢F + R%*5,(28G — ¢pA) + 262R(BB — C))

The limits when w — 0 can now be found for each part of the sum :

o A = ¢2IZ5E —0

« A, = 4B2§U22R3E —0
N AR E

o Ay = % s 0

. A= 2080,(R* +45))G

A w—0

All of these limits were calculated using the function 1imit () of SimPy (see Appendiz).

Therefore :
lim (A1 + A — A3 — Ay — A5 —Ag) =0
w—0
So, like with the flow approach, the low frequency tortuosity is :
Qo = 0

Zero vorticity assumption

The permeability of the approach with the assumption of zero vorticity is :

- —52< ROE + 2436,G >
= U\ R(2 - ¢)E —2B5,G

Once again, the tortuosity expression is taken with the permeability of the approach with the
assumption of zero vorticity :

_ o (2
@0 = ulzlg}] (512)H

oy (R<z>(2 —Q)E - 2¢55vG>
B S4(ROE + 2/36,G)

I
€=
LE
/
N
= ©-
I8
~
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With the same technique used with the pressure approach, A is the denominator and the
expression can be rewritten as this sum :

Ro(2 - ¢)E  2¢86,G
A A

with :

A = 53(ROFE + 286,G)

The limits when w — 0 can now be found for each part of the sum :

2—9)F
ooy BORZOE
o 8y = 2E

All of these limits were calculated using the function limit () of SimPy (see Appendix).
Therefore :
lim (Al - AQ) =0
w—0
So, like with the flow and pressure approach, the low frequency tortuosity is :
Qo = 0

2.2.2 First approximation of the resistivity.

In order to find the approximation of the resistivity, it was necessary to find the static intrinsic
permeability Il for every approach. Therefore, the real and imaginary parts of the permeability
are to be separated [Auriault et al. 1985], [Boutin & Geindreau 2010], as :

. 1 :
Iy ~ ilir}) Re <H) = lim Re(II)

w—0

Flow approach.

0 — s R%2pA +25,R(BB + C)
YU\ R2(1 + ¢)A + 20, (—2RB2E + RBF + RC + 865,G

Using the simplified expression of A, B, C, E and F, I, can be simplified too :
Numerator :

R*¢A+26,R(BB + C) = —R*¢log(B) + B°R>log(B) + R*log(B3)
= (1 - ¢+ B*)R?log(B)
= 23%R*log(B)

= | 2R} log(B)
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Denominator :
R*(1+ ¢)A = —R*(1 - ¢)log() = —R}log(B)
—45,RB*E = —452 >
—46,RBF = 462
20,RC = R?log(B)
16028G = 85%(B% — 1)

¢

R?*(1 — ¢)A+25,(—2RB?E + RBF + RC +835,G = §2(4 — 43% + 83% — 8) + ﬂRi log(B3)
R21
=| —4¢6% + qﬁfﬁ(;g(ﬂ)

Permeability for the flow approach :

I, =

2Rfc log(B)
OR]

R} log(B)
Now, the permeability is simplified and the real part must be found. The imaginary unit is, in

this expression, contained in ¢, :

I
Lpow

Oy =
But the only 6, is in the denominator, so in order to solve that, H is needed :

g L —d0d PR} log(B)
- I, 2R}log(B) ~ 26%R}log(B)
29 n Z.fbpow

Rilog(B) 28

H is defined in a complex form a + b, with :

2¢
a = —m The real part
b= (gg g‘: The imaginary part

1 1
Finally the real part of II, can be found, as the real part of T=a b is (12;11)2 :
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2¢
1 ~ RZlog(B)
Re <H> - 4¢2 ¢2p%w2
Rilog®(8)  48%w?
2% AR5 u" log’ (8)
© R31og(B) 16928402 + ¢2p3 R4 log? (5)w?
86" R} p* log(B)

160842 + ¢pERY log” (B)w?

And now the static intrinsic permeability can be calculated :

. 1
Iy, = ul)l_% (Re(H))
a1p2 2
i [ — 85 Rfﬂ IOg(ﬂ)z
w=0\ 16084 % + ¢pg R} log™ (B)w?

_ R}log(1-9)
19

And finally the resistivity o, defined by o = Hﬂ’ is :

0

B dop
R%log(1 — ¢)

g =

Pressure approach.

0 g R3GE + R26,(28G — ¢A) + 202R(BB — C)
P <¢R3E(R2 ¥ 4825,) — R25,(2— ¢)A — 2R62(C + BF) — 285, (R2 + 453)0)

By using the same method as previously, the result is :
Numerator :

SR’E = 6,6R?
28R%*5,G = R?6(B* —1) = —R?*6,¢
—~¢R?6,A = pR*S,1og(B)
202RBB = 6,R*3%log(B)
—262RC = —6,R*log(B)

5,0R? — R%5,6 + ¢R25, log(B) + 6,R2 3% log(B) — 8, R log(8) = [0]

Denominator :
The denominator is :

51}(¢R2(R2 + 1) + (2 - (b - Rz) 10g(ﬂ) + 4¢R261) + 4512)(¢ - 1) ‘
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Therefore :

Mo, = lim Re(IT) = Re(lim (IT))
w—r

w—0

0
fe <5U(¢>R2(R2 +1) + (2 — ¢ — R?)log(B) + 4¢R?5, + 465(¢ — 1))
-

Considering the result obtained, it can be seen that the method used does not allow to establish
a usable relationship. It is therefore necessary to implement another method.

In addition, the investigations carried out have identified a problem in the expression of the
dynamic visco-inertial permeability.

2.3 Verification of the homogeneity of visco-inertial dynamic
permeability expressions

The unit of all permeabilities is square meters. It can easily be spotted on the static intrinsic
permeability for the flow approach :

B R? log(1 — ¢)
4¢
Ry is the average fiber radius, so the unit is meter, and ¢ the porosity is unitless. The unit of
I, is m? as it should be.

0v —

But for the pressure approach, a homogeneity problem is encountered. Let’s break it down :

0 s R3GE + R26,(28G — ¢A) + 262R(BB — C)
P (¢R3E(32 +45%5,) — R25,(2 — §)A — 2R32(C + BF) — 258,(R* + 45,2,>G>

If the different parameters are replaced by their unit :

m2< m3E +m3(G — A) +2m3*(B — O) >
m3E(m2 +m) —m3A —m3(C + F) — m3G
o (mP E+4+(G-A)+(B-C)

- <mBE(m2+m)A—(C+F)—G>
—m2( E+(G-A)+(B-0C) >

B Em?24+m)A-(C+F)-G

A,B,C,E, F and G are unitless, as they only depend of ¢ (and /) and p, which is also unitless

because p = 65 and the unit of R and J, are both meter.

So we can clearly see the homogeneity problem and in order to solve it, the best solution is to
move the problem one level higher and recalculate the permeabilities.
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Chapter 3

Permeabilities & Results

3.1 Determination of dynamic visco-inertial permeabilities

In order to recalculate the permeabilities of all approaches, the five equations systems in the part
1.3.2 will be used.

3.1.1 Flow approach
For the flow approach, this is the system that will be used :

¢ c 1
5, (_ (m%)z + 21> 5 (@) - aki) = 0
c Cs
c10% + 5%1001) + EKO(Q) =0
¢ c 1 K ’
% (f = 5) g, h0) ki) 1 < 0
¢é é v c C
=5 =5~ @Rl T Rl = 0
1 C ! Cs ’
5 <0155 —+ é[o(p) + 52K0(p)> +II = 0

Only the last equation depend on the approach, the other one are fixed for all systems. In
order to resolve this system, the LU decomposition can be used but a reorganization of the system
is needed. It can be written as :

Ax=1b
with :
[ =0 & Lie) —Ki(g) 0]
(BR)? 2 0uBR 0,8R
o Mo ol o 0
9 2 _ v v c1 0
A | 9% o0, —hp) Kp) | .| b=]o
R® 2 RS, RS, . |
11 L) Kb 0 0
R? 2 B3R 53R
0 5 olp)  Kolp)
I 2 252 202




The permeability for the flow approach is :

52 (R2$A + 2R6,(C — BB))
R2(2 — ¢)A 1 2R0,(C + B(2B — F)) + 4RB25,E — 8662G

I, =

3.1.2 Pressure approach

For the pressure approach, this is the system that will be used :

1
2 (-2 4 L) b —(eali(q) — 3K =0
(- + o7 (40 (0) 9 1(0)

6153‘1‘5%10(Q)+6%K0(Q) = 0

o ay 1 _ _
02 (7 2C) p, (1)~ K E) F T = 0

0 1 2 3 _
i 1_ﬁ_5_55’7R11(p)+55’7RK1(p) = 0

2(51100 Co C2 Cc3 C3

T RS +§II(P)—5%7RIZ(P)—%K1(I?)—(SgiRKﬂp) = 0

With the last equation depending on the pressure approach, the LU decomposition is used, but
first a reorganization of the system is needed. It can be written as :

Ax =10
with :
[ s 5 Ii(q) —Ki(q) 0]
(BR)? 2 ouBR 0yBR
0o & I‘)a(zq) Kggfﬁ 0 o 0
2 _ 82 7 1 €1 0
A | 9 5 Li(p) Ki(p) 1 x=le| b=lo
R? 2 RS, Ro, c 1
11 I(p) —Ki(p) 0 0 0
R 2 3R 3R
—20; 0 Li(p) I(p) —Kilp) Ka(p) 0
e 5 2R & »2r

Finally, the permeability is :

—@ER? + (¢E" — 2BG)R?6, + [2(C' + E') — 2Ef3* + B(F — B) — 2BE'| R6? + 48G63
(2 - ¢)ER3 + (pE" + 2BG)R26, + [2(C' + E') — 2EB2 + B(F — B) + 28E'] R62 + 4BG 53

I, = &, —

with :
E' = T1(q)K2(p) + I2(p) K1(q)

E" = Ir(p)Ko(q) — Io(q) K2(p)
C" = L(p)K2(p) — Ii(q)K2(p) + L(p)K1(p) — I2(p) K1(q)

o
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3.1.3 Approach with the zero vorticity hypothesis
For the approach with the zero vorticity hypothesis, this is the system that will be used :

2 Co Ccy 1
~mape t 5 ) T igp (ehld) -k -
5“( (BR? © 2>+5vﬁR(02 1(q) — e3K1(q)) 0
C Cs
oL ey L . )
5”(R2 26) RS, (02611(1’) CBch(p))JrH =0
R 2Ki(p) =
R? 2 53361(”)*536}3 1(p) 0
éfl(P)—éngl(p) = 0

Same as before, the LU decomposition can be used, but a reorganization of the system is
needed. It can be written as :

Az =0
with :

[ o, 0 Lile) —Kilg) 0
(BR)2 2 6,BR  6,BR
. U B 0
v v C 0
A a0 =0 —L(p) Kilp) 1 x= C; b—lo
R 2 R, R, . .
1 1 L) K o 0
R 2 3R &R
Li(p) —Ki(p)
I PER

And the permeability for this approach is :

" _52< RoFE + 2$5,G )
= U\ R(2 - ¢)E —2B5,G

3.2 Low Frequency Signal

Now that the relationships of the permeabilities are found, it’s time to find the static intrinsic
permeability IIy at low frequency signal for all approaches, in order to establish the expression of
the resistivity. But for this part, the limiting form for small arguments will not be used as, like
previously in the calculation for the pressure approach, the numerator is 0 for some expressions.
Therefore, the asymptotic expansions for the modified Bessel functions come into play.

Using the asymptotic expansions found before, the different expressions will be too big to be
calculated by hand. That’s why the calculations in this part will be done with SymPy (See the
Appendiz for the code).
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3.2.1 Flow Approach

Using Sympy, this expression is calculated :

»>> Pi_v=delta v**2* (R"i phi*A+2*R*delta v*(C-bet*B))/(R**2*(2-phi)*A+2*R*delta v*(C+bet*(2*B-F))+4*R*bet**2*delta v*E-8*bet*delta v**2*G)

- phi) - (1 - phi)*(-I*R_f**2%omega®*rho_0*(phi*(log(R_f) - log(mu)/2 + log(omega)/2 + log(rho_©)/2 + log(1/(sqrt(-I)*sqrt(1 - phi))) - log(2)) + log(l - phi)/2) + 2*m

phl}))/((l = phl)’(r\; *2*omega*rho @*(phi - 2)*(T*R { omega*rho_@*(phi*(log(R f) - log(mu)/2 + log(omega)/2 + log(rho @)/2 + log(1/(sqrt(-I)*sgrt(1 - phi))) - log(2)) + log(1 - phi)/2)
+ 2*mu*(1 - phi)*log(1 - phi)) - 4%mu*(] 1)*%2%(-R_**2*omega*rho_8*(4*iota - phi + 2*theta - log(1 - phi)/2 + 1) + 4*T*mu*phi + 4*T*mu*(1 - phi)) + 4%mu*(phi - 1)*(-R_F**2%cmega*rho 8*(1 - phi)*log(1 -
phi) + R f**2*omega*rho €*(2*(1 - phi)*(2*iota - theta + log(1 - phi)/2) + 1) - R f**2*omega*rho @*log(1 - phi)/2 - 4*I*mu*(1 - phi))))

Figure 3.1: Permeability with flow approach.
As we have seen previously, the resistivity is expressed as a function of Il, the limit of the real
part of II. It is possible to use an equivalence relation for the numerator and the denominator of
this expression, as if f ~ g and a ~ b, then f/a ~ g/b.

With the low frequency signal, w — 0, so all parts where w is present can be removed.

For the numerator :

o iR (=2(2 = 6)(6 — 1) log ~16)26(1 — ¢)*plog(1 - 6)

For the denominator :

~ 16ip%(1 — 6)26(6 — 1)

There is an imaginary unit in the numerator and the denominator, so the equivalence is real
and the result is :

iR (~21(2 — 6)(¢ — 1) log —1)26(1 — ¢)*ulog(1 — )
16in2(1 — 6)26(6 — 1)

HO’U =

7R?‘ log(1 — ¢)
4¢

Eventually, this is the same result as in part 2.2.2.

3.2.2 Approach with the zero vorticity hypothesis

The same method is used for this approach :

Using Sympy, this expression is calculated :

>>> P} z=delta v**2*(R*phi*E+2*bet*delta_v*G)/(R*(2-phi)*E-2*B*delta v*G)
(simplify(PI_z))

-T*R_F**2*mu*phi*sqrt(1 - phi)*(4*iota - phi + 2*theta - log(1 - phi)/2 + 1)/(-R f*sqrt(mu)*sqrt(omega)*phi*sqrt(rho 8)*sqrt(-1)*(phi - 1)*log(1 - phi) - sqrt(1 - phi)*(phi - 2)*(R_f**2*omega*rho @*(4*iota -
phi + 2*theta - log(1 - phi)/2 + 1) + 4*Tfmu*(phi - 1)))

Figure 3.2: Permeability with flow approach.

Same as before, the parts containing w are removed.
For the numerator :

_log(1—9)
4

~ —4ZR u¢\/ + ¢+

N D
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For the denominator :

& i/ T= du(o-2)(6 - 1)

There is an imaginary unit in the numerator and the denominator, so the equivalence is real
and the result is :

—4iR3pg/(1 - ¢) (1 7 it g - 7109(147 ¢)>

My, =
0 a0 — oo - 26— 1)
_ fR?cegb
| e-2(6-1
Wi‘che:%erJrg,M'

3.2.3 Pressure Approach

The pressure approach has the most complicated expression for the permeability, but it contains
the expression of the approach with the zero vorticity hypothesis :

| —¢ER® — 26GR%,

+ ¢E"R?*5, + [2(C' + E') — 2EB% + B(F — B) — 2BE'] R62 + 43G63

—(2 - ¢)ER® 4+ 28GR?S, |+ E"R25, + [2(C' + E') — 2EB? + B(F — B) + 28E'] RS2 + 43G53

The expressions for C’, E' and E” are :

E'=T1L(q)Kz(p) + Ix(p) K1 (q)
E" = Ir(p)Ko(q) — Io(q) K2(p)
C" = L(p)K2(p) — Ii(q)K2(p) + L(p)K1(p) — I2(p) K1(q)

Using the ascending serie form for modified Bessel functions, Is and Ky can be calculated :

I(z) = 25 +0(=%)

2

Ky(z) = ZZ +o(2?)

By using SymPy, we can remark that all the expressions in the numerator and denominator
which are multiplied by 62 and &3 cancel each other out, which gives us :

0~ 82 —¢ER? — 28GR2$,
Po+ Y —(2 — ¢)ER3 + 2BGR?),
, RoE+2B5,G

=% R(2— ¢)E — 286,G I

Therefore :
—R2%ep
f
Iy, =1y, =| ——————
R ICEPICEEY
1-— 0 log(l—
Wlth6:T¢+L+§*M
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3.2.4 Dynamic permeability related to acoustic dissipation by thermal
effects

For this part, the limiting forms for small arguments of the modified Bessel functions are used.

2
== (1 =B (L) - BL()) — e (K1G) m(q'm)

Ro
with :
= 62K (p)
Io(¢") K1 (p') + Ko(¢') 1 (')
_ 671 (p')
Cy = —

Io(q" ) K1 (p') + Ko(q') 1 (p’)

Now with the limiting forms for small arguments of the modified Bessel functions, the expres-
sions of ¢4 and c5 can be written :

S KL (p)
Io(q) K1 (p') + Ko(g') 1 (p')
o7
7
log(Bp’)

2
_ 5t
/2

1- % log(Bp’)

Cy = —

~

b

no|

1
v

571 (p')
Io(¢) K1 (p') + Ko(g') 1 (')
82p/
2

pl
17 Y 108(3]9/)

52

Cy — —

D)
v plog(Bp
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This gives :

—52 / 2,/
a(hlp) = Bh(e) = —— (5 = )
1 — = log(6p')
—67 ¢’

2 — p?log(Bp’)

/ / _5t2 1 ﬁ
cs(K1(p") = BK1(¢) = 5————(5 — 27)
}%*plog(ﬂp’) v P

-[0

Those results are implemented in = :

52
== 8 (1 - 2L el 0) — B(e) — s (K1)~ m(q'm)
— 62 <1 _ l _6t2¢p/ )
K p'$2—p?log(By)
=07 |1+ ,25‘52

In order to find Ey, the real part of = is needed. Using the function re(Xi) of Sympy, the
program gives this solution :

7C,R2 pow
—2)2 <pfp0_|_2>

Re(E) 4Xo(1 - ¢)
elz) =
R C PowW
2 0 nCy i po
pe A5(1—¢)? AXo(1 - ¢)

8X3 (¢ — 1)(7Cp Riwpo — 8Ao(¢ — 1))

= C2u2 P[40 R 1w p3(10g(Cy) + 21og(Ry) — log (o) + log(w) + 10g(p0))? + (7Cy R2wpo — 8ho(6 — 1))7]

2
Ao
o+ Cpw?pg

[1]

0
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3.3 High Frequency Signal

At high frequency, we can write :

e, — 0

wW—r0o0

e A=B=-C=FE=F=-(G

3.3.1 Flow Approach

Based on the second previously expression, we can determine an equivalent relationship when w
tends to oo for the dynamic visco-inertial permeability :

_ 62 (R*¢ +2Rd,(—1 - j3))
R%(2 — ¢) 4+ 2R6,(—1 + B) + 4R34, + 8862
SR 53¢
f= B2(2-9)  (2-9)
Let’s now find Im(H) :

11,

g 2= _ wm-0)

= =1 =i¢Im(H
2 no )
Now for the tortuosity :
Qooy = lim ——Im(H)
w—+00 WpPg
po wpo(2 — @)

3.3.2 Approach with the zero vorticity hypothesis

Based on the same assumptions that for the flow approach, we can write :

_ o Ro—2Bo,
=0 <R(2 - ¢)+ 26%)
Sy R Lt

te R2-9) (2-9)
Let’s now find Im(H) :

2-¢)  .wp(2-9)

H = =1
53¢ pe
Now for the tortuosity :
Qooy = lim 1o Im(H)
w—+o00 wpo
1P wpo(2 — @)

wotoowpy  pe

-9
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3.3.3 Pressure Approach

The expression of the permeability can be simplified using 6, — 0

w—r00

PER? — 2BGR?5, + ¢E"R%*5, + [2(C' + E') — 2E(? + B(F — B) — 28E'| R62 + 43G6&3
(2 — ¢)ER3 + 2BGR26, + ¢E"R25, + [2(C' + E') — 2E32 + B(F — B) + 2BE'] R62 + 43G63
2 R )

o2 GER* ~ (2-9)
Let’s now find Im(H) :

Hp:‘ﬁ

2-¢) _ wp(2-9)

H = =1
53¢ 1o
Now for the tortuosity :
oy = lim O Im(H)
w—r+00 wpo
_ i AP wr(2-9)
= lim ————=

wotoowpy PP

4]
3.4 Results and comparison

3.4.1 Low Frequency
Visco-Inertial effects

In the case of the low frequency signals, the most valuable result researched here was the resistivity.
As the static intrinsic permeability II has been found for all approaches, the resistivity is :

o=t
1o
T ‘ 9p ‘ o
no e =26 1) [ p6—2)(¢—1)
—R%log(1 - ¢) —Rjeg ~R2e
withe:%ﬂJrg—M.

Now if the parameters are replaced by the numerical values corresponding to the flax wool’s
property at 25°C :

o u=185¢—5 (kg.s~tm™1)
o ¢ =0.979
o Ry =12.65e—6 (m)

and with the different constant of the modified Bessel functions, ¢ = 0.03860786 and 0 =
0.57221566, we have :

Oy ‘ Op ‘ o,

117187.820230659 ‘ 3907.99311566433 ‘ 3907.99311566433
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Those values can be compared with the experimental result of Clement Piegay [Piégay 2019] :

Laine | Réf. [0 —p(N.om2s) [ o —v(N.m™%s) | 0 —2(N.m™Ls) | o exp(N.m2L.5)
Lin | D 5808 7650 6256 5052

Figure 3.3: Resistivity values estimated from the 3 approaches p, v and z from the modeling HAC
cylindrical and experimentally characterized resistivity value for flax wool (D) [Piégay 2019]

The result given by the flow approach is very far, so there must be a problem in the expression.
This can come from the approximation of the modified Bessel functions.

The result obtained for the pressure approach and the zero vorticity approach gives a result of
the same order of magnitude as the experimental value. It is an interesting result, but it should
be confirmed by comparing with other experimental values.

Thermal effects

The results for the static thermal permeability in [Piégay 2019] are as follows :

le—9 10!

—  Permecabilité thermigue stalique
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Figure 3.4: (a) Representation of the real part of the thermal permeability as a function of the
frequency for flax wool (D), (b) evolution of the thermal permeability value Zy/Ry as a function
of the porosity.

The static thermal permeability found during the internship is :

L%
C2w2pg
With numerical values, the result doesn’t match with Clément work. =g does not depend on
the porosity ¢, therefore it is impossible to verify if, when the porosity tends to 0, Z¢/Ry tends to
0 and when it tends to 1, Z9/Ry tends to 1.

This is maybe due to the use of the limiting form for small arguments instead of the asymptotic
expansions for the modified Bessel functions, that were not used because of a lack of time.

3.4.2 High Frequency
For the high frequency signal, there is the same tortuosity for all approaches :

Ooov ‘ Aoop ‘ ooz

2-9)[2-9) ]| (2-9)
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Likewise, in [Piégay 2019] the relationship between high frequency tortuosity and porosity is :
Qoo = 2— ¢

This figure represents the evolution of the function to which the tortuosity is related as a
function of frequency :

1.25
—  Approche — p
1'20\ ----- Approche — v
T~ | Approche — z
L5 e K
3 .
1.05; ‘\H\\H\
1. %50 0.85 0.60 0.95 1.00

Figure 3.5: Evolution of the values of & — p, &« — v and «a — z in relation to the porosity [Piégay
2019].
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Chapter 4

Conclusion

The internship explored different mathematical methods to find equivalent expressions in 0 and
infinity of special Bessel functions.

For the particular case of the internship, which concerns acoustic dissipative phenomena inside
fibrous materials, this has allowed to identify the methods on which we can rely.

The internship also allowed to re-establish the expressions of dynamic visco-inertial permeabil-
ity. By taking a step back, we realize that given the heaviness of the expressions, an error can
easily slip in. It is therefore necessary to be very rigorous in the establishment of relations and the
resolution of equations. The use of a software of formal calculation seems then essential.

But the limitation of the software used, SymPy, were the reason for the simplification of the
modified Bessel functions. It could be interesting, maybe with a more powerful software of formal
calculation, to calculate the different permeability expressions using the full expression of the
ascending serie form for example.

Regarding the expressions obtained, we have seen that it is necessary to make several checks
such as homogeneity, and then to test them with experimental values and results.

Expressions such as high frequency tortuosity for example give results in agreement with ex-
perimental results. The internship also allowed to identify that some expressions (like resistivity
for the flow approach) could not be validated.

There is still work to be done on some expressions, and there are still relationships to establish
for the viscous and thermal characteristic lengths. More validations will also be necessary using
other experimental values related to plant wools but also to other fibrous insulators or even other
fibrous materials.

During this internship, I was able to discover and apply Bessel’s functions, as well as learn to
program on SymPy. This introduction to research showed me that there are many approaches to
the same problem and that knowing how to adapt to new situations is crucial for this type of work.
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Appendix A

List of symbols used

o C, : heat capacity of air at constant pressure (J.K “Lkg™1)
e f: frequency of the wave (Hz)

e R : radius in cylindrical coordinates (m)

e Ry : average radius of the fibers (m)

e « : tortuosity

e (3 : homogenization parameter (cylindrical HAC)

e 0; : thickness of the thermal layer (m)

e 0, : thickness of the viscous boundary layer (m)

e A’: thermal characteristic length (m)

e )¢ : thermal conductivity (W.m~=t.K~1)

o 4 : shear viscosity (Pa.s)

[1]

: thermal dynamic permeability (m?)

e = : thermal static permeability (m?)

e II : dynamic permeability (m?)

e Il : static permeability of the fluid phase (m?)

e o : density of the air at the origin (kg.m~3)

e o : static resistance to air flow (resistivity) (N.m~%.s)
® ¢ : porosity

e w : pulsation of the wave (rad.s 1)
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Appendix B

Code A - Removing the

indeterminate form

from sympy import *

init_ses
init_pri

sion ()
nting ()

from sympy import x*
import numpy as np
import scipy.integrate as integrate

import scipy.special as special

omega =

R_f = symbols(’R_f’,real=True,
; phi = symbols(’phi’,real=True,

rho_0 =

mu = symbols(’mu’,real=True,
= symbols(’lambda_0’,real=True,
C_p = symbols(’C_p’,real=True,

lambda_0

delta_v

symbols (’omega’,real=True, positive=True)

positive=True)
positive=True)

symbols (’rho_0’,real=True, positive=True)

positive=True)

positive=True)

= sqrt(mu/(I*rho_O*omega))

bet = sqrt(1-phi)

R = R_f/bet

p = R/delta_v

q = pxbet

A = -log(bet)

B = bet*p*xlog(bet)/2
C = pxlog(bet)/2

E = 1/p

F = 2/(betx*p)

G = -phi/(2*bet)
lim_A = limit (A, omega
lim_B = limit (B,omega
lim_C = 1limit(C,omega
lim_E = limit(E, omega
lim_F = limit (F,omega
lim_G = limit (G, omega

print ("A->",1im_A,"

=50

lim_G)

,0)
,0)
,0)
,0)
,0)
,0)

B->",lim_B,"

C->",lim_C,"

37
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60

61

62

##### Flow approach

X1=simplify (2*xR**2*phi*A+2*delta_v*(bet*B+C)) #X1
X2=simplify (R**2%phi*(1-phi)*A) #X2

7 Yi=simplify (4*xdelta_v*R*phi*bet*E/(delta_v**4)) #Y1 (omega)
Y2=simplify (2*xdelta_v*R*phi*bet*F/(delta_v**4)) #Y2 (omega)
X3=simplify (2*xdelta_v*phi*R*C) #X3

Y3=simplify (16*delta_v*#*2*phi*bet*G/(delta_v**4)) #Y3(omega)

(Y2+Y3-Y1) /X1

limit ((Y2+Y3-Y1) /X1, omega,0)

##### Pressure approach

PI_p = delta_v**2x( R**3*phi*E + Rx**2xdelta_v*(2*bet*G-phi*A) + 2*delta_v**2xR*(bet
*B-C) )/( phi*R**3*xEx(R**2+4xbet**2*xdelta_v) - R**2*xdelta_v*(2-phi)*A - 2%R=*

delta_v**2*x(C+bet*F) - 2*bet*delta_v*(R**x2+4xdelta_v**2)*G )

limit ( phi**2*xR**x5%E / (delta_v**4x(R*x*3xphi*E + 2%R*x2*xdelta_v*bet*G-2*xR**2x
delta_v*phi*A+2*delta_v**2xR*bet*B-2+xdelta_v**2*xR*xC)), omega, O )

limit ( phi**2*xR**3*Ex4*xbet**2*xdelta_v / (delta_v**4*(R*x*3*phi*E + 2xR**2*xdelta_vx*
bet*G-2*xR*x*2*delta_v*phi*A+2*xdelta_v#**2*xR*bet*B-2*xdelta_v**2xR*C)), omega, 0 )

limit ( phi*R#**2xdelta_v*(2-phi)*A / (delta_v**4*x(R**3*phi*E + 2xR**2*xdelta_v*bet*G
-2*%R**2xdelta_v*phi*A+2*xdelta_v**2xR*bet*B-2*xdelta_v**2*xR*xC)), omega, O )

limit ( 2*phi*R*delta_v**2*C / (delta_v**4*x(R**3*xphi*E + 2*R*x2xdelta_v*bet*G-2*R
**x2*%delta_v*phi*xA+2xdelta_v**2*xR*xbet*B-2*delta_v**2*R*C)), omega, O )

limit ( 2*phi*R*delta_v**2xbet*F / (delta_v**4*(R**x3*phi*E + 2xR**2*delta_v*bet*G-2*
R**2*delta_v*phi*xA+2*xdelta_v**2*R*bet*B-2*delta_v**2xR*C)), omega, 0 )

limit ( 2*phi*R*xdelta_v*bet*(R*x*2+4xdelta_v**2)*G / (delta_v**4*(R**3*phi*E + 2*R
**2*delta_v*bet*G-2*R**x2xdelta_v*phi*A+2xdelta_v**2*Rxbet*B-2*xdelta_v**2*xR*C)),
omega, 0 )

###### Approach with the zero vorticity hypothesis

PI_z=delta_v**2*(R*phi*E+2*bet*delta_v*G)/(R*(2-phi)*E-2*B*delta_v*G)

alpha_0z = phi/(PI_z*delta_v**2)

limit (alpha_Oz, omega,0)
Listing B.1: Code A
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Appendix C

Code B - Determination of dynamic
visco-inertial permeabilities

from sympy import *

init_session ()
init_printing ()

from sympy import *

import numpy as np

import scipy.integrate as integrate
import scipy.special as special

omega = symbols(’omega’,real=True, positive=True)

> R_f = symbols(’R_f’,real=True, positive=True)
; phi = symbols(’phi’,real=True, positive=True)

rho_0 = symbols(’rho_0’,real=True, positive=True)

mu = symbols(’mu’,real=True, positive=True)

lambda_0 = symbols(’lambda_0’,real=True, positive=True)
C_p = symbols(’C_p’,real=True, positive=True)

delta_v = symbols(’delta_v’)

R = symbols(’R’,real=True, positive=True)

bet = symbols(’bet’,real=True, positive=True)

I0_p= symbols(’IO_p’)

I1_p= symbols(’I1_p’)

; KO_p= symbols(’KO_p?)

K1_p= symbols(’K1i_p?’)
I0_q= symbols(’I0_q’)
I1_gq= symbols(’Il_q’)
KO_q= symbols(’KO_q’)
K1_qg= symbols(’K1_q’)
I2_p =symbols(’I2_p’)
K2_p=symbols (’K2_p’)
_0 = symbols(’c_0’)
_1 = symbols(’c_17)
_2 = symbols(’c_2’)
_3 symbols(’c_37)
i = symbols(’Pi’)
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15
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A7

18

19

#FLOW
HHHAHHHBAAH B AR HBRAHHBERHHH

solve_linear_system_LU(Matrix([ [ -delta_v**2/(bet*R)**2, delta_vx**2/2, I1_q/(
delta_v*bet*R), -Ki_q/(delta_v*bet*R), 0,0], [0, delta_v**2, I0_q/delta_v**2,
KO_q/delta_v**2, 0,0], [delta_v**2/R**2, -delta_v**2/2, -I1_p/(Rxdelta_v), Ki_p
/(R*xdelta_v), 1,01, [1/R**2, 1/2, I1_p/(delta_v**3*R), -K1_p/(delta_v**3xR),
0,11, [0, delta_v#**2/2, IO_p/(2*delta_v#**2), KO_p/(2*xdelta_v*x*2), 1,0]1]1),[c_0,
c_1,c_2,c_3,Pil)

Pi_p = (delta_v**2*(IO_p/(2xdelta_v**2) - I0_q/(2xdelta_v*%*2))/(I0_q/delta_v**2 -
2+%I1_p/(R*delta_v)) - (delta_v**2x(-I0_qgx*(delta_v#**2/2 + 0.5*delta_v**2/bet**2)
/delta_v**4 + I1_p/(R*xbet**2*xdelta_v) + I1_q/(R*bet*delta_v))/(IO0O_q/delta_v**2
- 2xI1_p/(R*xdelta_v)) + delta_v**2/bet**2)*(KO_p/(2+xdelta_v**2) - KO_q/ (2%
delta_v#**2) - (IO_p/(2xdelta_v**2) - I0_q/(2xdelta_v**2))*(KO_qg/delta_v**2 + 2%
K1_p/(R*delta_v))/(I0_q/delta_v**2 - 2*I1_p/(R*delta_v)))/(-KO_qg*(delta_v**2/2
+ 0.5*%delta_v#**2/bet**2)/delta_v**4 - K1_p/(R*bet**x2*xdelta_v) - K1_q/(R*betx
delta_v) - (KO_qg/delta_v**2 + 2xK1_p/(R*delta_v))*(-I0O_g*x(delta_v**2/2 + 0.5%
delta_v**2/bet**2)/delta_v**4 + Il_p/(R*bet**2*xdelta_v) + Il_q/(R*betxdelta_v))
/(I0_q/delta_v**2 - 2*xI1_p/(R*xdelta_v))))/(-(I0_p/(2*delta_v**2) - I0_q/ (2%
delta_v*%2))/(I0_q/delta_v#**2 - 2%xI1_p/(Rxdelta_v)) + 1 + (KO_p/(2*delta_v**2)
- KO_q/(2xdelta_v*%*2) - (IO_p/(2xdelta_v**2) - I0_q/(2*delta_v*%*2))x*(K0O_q/
delta_v#**2 + 2%K1_p/(Rxdelta_v))/(I0_q/delta_v**2 - 2%I1_p/(Rxdelta_v)))*(-I0_q
*(delta_v**2/2 + 0.5xdelta_v**x2/bet**2)/delta_v**4 + I1_p/(R*xbet**2xdelta_v) +
I1_q/(R*bet*delta_v))/((I0_q/delta_v**2 - 2*xI1_p/(Rxdelta_v))*(-KO_q*(delta_v
*%2/2 + 0.5%delta_v**2/bet**2)/delta_v#**4 - Ki_p/(R*bet**2*xdelta_v) - Ki_q/(Rx*
bet*delta_v) - (KO_q/delta_v#**2 + 2*K1_p/(R*delta_v))*(-IO_q*(delta_v**x2/2 +
0.5*xdelta_v**2/bet**2) /delta_v**4 + Il_p/(Rxbet**2xdelta_v) + Il_q/(Rxbet*
delta_v))/(I0_q/delta_v**2 - 2*I1_p/(Rxdelta_v)))))

print (simplify (Pi_p))

#PRESSURE
HHHAAHHBAAH B AR HBER AR BRAHHH

print (solve_linear_system_LU(Matrix([ [ -(delta_v*x*2)/((bet*R)**2), (delta_v**x2)/2,
I1_q/(delta_v*bet*R), -Ki1_q/(delta_v*bet*R), 0,0], [0, delta_v**2, I0_q/(
delta_v#**2), KO_q/(delta_v**2), 0,0], [(delta_v*x*2)/(R**2), -(delta_v*x2)/2, -
I1_p/(Rxdelta_v), Ki_p/(R*delta_v), 1,01, [1/(R**2), 1/2, I1_p/(delta_v**3*R),
-K1i_p/(delta_v*x*3%R), 0,1], [-(2*delta_vx*x*2)/(R**3), 0, Il_p/(delta_v#**3) -I2_p
/(delta_v**2xR), -K1_p/(delta_v#**3)-K2_p/(delta_v**2*xR), 0 , 011),[c_0,c_1,c_2,
c_3,Pil))

Pi_p= (delta_v#**2x(-I0_q/(R*delta_v#**2) + Il_p/delta_vx**3 + 2xI1_p/(R*xx2xdelta_v) -
I2_p/(R*xdelta_v*%*2))/(I0_q/delta_v**2 - 2*xI1_p/(R*delta_v)) - (delta_v**2x(-
I0_g*(delta_v**x2/2 + 0.5*xdelta_v**2/betx**2)/delta_v**4 + I1_p/(R*bet**2xdelta_v
) + I1_q/(R*betx*delta_v))/(I0_q/delta_v**2 - 2xI1_p/(R*delta_v)) + delta_vx**2/
bet**2) *(-KO_q/(R*delta_v**2) - Ki1_p/delta_v#**3 - 2*K1_p/(Rx*2xdelta_v) - K2_p
/(R*xdelta_v**2) - (KO_q/delta_v#**2 + 2%K1_p/(R*delta_v))*(-I0_q/(R*xdelta_v*%*2)
+ Il_p/delta_v#**3 + 2*%I1_p/(R**x2xdelta_v) - I2_p/(R*delta_v#**2))/(I0_q/delta_v

**%2 - 2%I1_p/(R*delta_v)))/(-KO_q*(delta_v**x2/2 + 0.5*delta_v**2/bet*%*2)/
delta_v**4 - K1_p/(R*xbet**2*xdelta_v) - Ki_q/(R*bet*delta_v) - (KO_q/delta_vx*x2
+ 2%K1_p/(R*delta_v))*(-I0_qg*(delta_v**2/2 + 0.5*xdelta_v**2/bet**2)/delta_v*x4
+ I1l_p/(R*bet**2xdelta_v) + I1_q/(R*bet*delta_v))/(I0O_q/delta_v**2 - 2%xI1_p/(Rx*
delta_v))) + 2xdelta_vx**2/R)/((-I0_qg*(delta_v**2/2 + 0.5*xdelta_v**2/bet**2)/
delta_v**4 + I1_p/(R*bet*x2*xdelta_v) + Il_q/(R*bet*delta_v))*(-KO_q/(Rxdelta_v
**%2) - Kl_p/delta_v**3 - 2xK1_p/(R**x2*delta_v) - K2_p/(R*delta_v**2) - (KO_q/
delta_v**2 + 2*K1_p/(R*delta_v))*(-I0_q/(R*xdelta_v**2) + Il1_p/delta_v**3 + 2x
I1_p/(R*x*2*delta_v) - I2_p/(R*xdelta_v#**2))/(I0_q/delta_v**2 - 2*xI1_p/(R*delta_v
)))/((I0_q/delta_v**2 - 2*xI1_p/(R*delta_v))*(-KO_q*(delta_v**2/2 + 0.5+delta_v
**%2/bet**x2) /delta_v**x4 - K1_p/(Rxbet**2*xdelta_v) - Ki_q/(R*bet*delta_v) - (KO_q
/delta_v**2 + 2*K1_p/(R*xdelta_v))*(-I0O_q*(delta_v**2/2 + 0.5*delta_v#**2/bet**2)
/delta_v**4 + I1_p/(R*xbet**2xdelta_v) + I1_q/(R*bet*delta_v))/(IO0O_q/delta_v**2
- 2%xI1_p/(R*delta_v)))) - (-I0_q/(R*xdelta_v#**2) + Il _p/delta_v**3 + 2xI1_p/(R
x*x2*xdelta_v) - I2_p/(R*delta_v#**2))/(I0_q/delta_v**2 - 2*xI1_p/(R*delta_v)))
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36

8

) print (simplify (Pi_p))

#Zero vorticity hypothesis
HAHHBHAHBHAH SRR R AR H R RHAH SRR H

print (solve_linear_system_LU(Matrix([ [ -delta_v#**2/(bet*R)**2, delta_v**2/2, Il_q

/(delta_v*bet*R), -Kl_q/(delta_vx*bet*R), 0,0], [0, delta_v**2, I0_q/delta_v**2,
KO_q/delta_v**2, 0,0], [delta_v#**2/R**2, -delta_v#**2/2, -I1_p/(R*delta_v),

Ki_p/(R*delta_v), 1,0], [1/R*x2, 1/2, I1_p/(delta_v**3*xR), -K1_p/(delta_v**3*R)

, 0,11, [0,0, I1_p/delta_v**3, -Ki_p/delta_v**3, 0,0]11),[c_0,c_1,c_2,c_3,Pil))

Pi_z = (delta_v**2*(-I0_q/(R*delta_v#**2) + Il _p/delta_v#**3 + 2*xI1_p/(R**2xdelta_v)
- I2_p/(R*delta_v#*%2))/(I0_q/delta_v**2 - 2xI1_p/(R*delta_v)) - (delta_v**2x(-
I0O_g*(delta_v**2/2 + 0.5xdelta_v**2/bet**2)/delta_v**4 + I1_p/(R*bet**x2xdelta_v
) + I1_q/(R*bet*delta_v))/(IO0O_q/delta_v#**2 - 2*%I1_p/(R*xdelta_v)) + delta_v**2/
bet**2) *(-KO_q/(R*delta_v**2) - Kl_p/delta_v**3 - 2xK1_p/(R**2*delta_v) - K2_p
/(R*delta_v**2) - (KO_q/delta_v**2 + 2%xK1_p/(R*delta_v))*(-I0_q/(R*xdelta_v**2)
+ Il_p/delta_v#**3 + 2*I1_p/(R**x2xdelta_v) - I2_p/(R*delta_v#**2))/(I0_q/delta_v
*¥2 - 2%I1_p/(R*delta_v)))/(-KO_q*(delta_v**2/2 + 0.5*delta_v#**2/bet**2)/
delta_v**4 - K1_p/(Rxbet*x2xdelta_v) - K1_q/(Rxbet*delta_v) - (KO_q/delta_v**2
+ 2*%K1_p/(Rxdelta_v))*(-I0_gq*(delta_v**2/2 + 0.5xdelta_v**2/bet**2)/delta_vx**4
+ I1_p/(R*bet**2*xdelta_v) + Il_q/(R*betxdelta_v))/(I0O_q/delta_v**2 - 2*xI1_p/(Rx*
delta_v))) + 2*delta_v**2/R)/((-I0_q*(delta_v**2/2 + 0.5xdelta_v**2/bet**2)/
delta_v**x4 + I1_p/(R*bet**x2*delta_v) + Il_q/(R*bet*delta_v))*(-KO_q/(Rxdelta_v
**%2) - Ki1_p/delta_v**3 - 2*K1_p/(R**2xdelta_v) - K2_p/(Rxdelta_v**2) - (KO_q/
delta_v**2 + 2xK1_p/(R*delta_v))*(-I0_q/(R*delta_v**2) + Il_p/delta_v**3 + 2x
I1_p/(R**2%delta_v) - I2_p/(R*delta_vx*%*2))/(I0_q/delta_v**2 - 2xI1_p/(R*delta_v
)))/((I0_q/delta_v**2 - 2xI1_p/(R*delta_v))*(-KO_qgq*(delta_v**x2/2 + 0.5*delta_v
**2/bet**2) /delta_v**4 - K1_p/(R*bet**2+delta_v) - K1_q/(R*bet*delta_v) - (KO_q
/delta_v**2 + 2*K1_p/(R*delta_v))*(-I0_q*x(delta_v#**2/2 + 0.5xdelta_v**2/bet**2)
/delta_v**4 + I1_p/(R*betx**2*xdelta_v) + I1_q/(R*bet*delta_v))/(I0O_q/delta_v**2
- 2xI1_p/(R*delta_v)))) - (-I0O_q/(Rxdelta_v**2) + Il_p/delta_v**3 + 2xI1_p/(R
**2xdelta_v) - I2_p/(Rxdelta_v#**2))/(I0_q/delta_v**2 - 2%xI1_p/(R*delta_v)))

60 print (simplify (Pi_z))

Listing C.1: Code B
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Appendix D

Code C - Low Frequency Signal
(Visco-inertial effects)

1 from sympy import *

init_session ()
+ init_printing ()

6 from sympy import *

7 import numpy as np

g import scipy.integrate as integrate

9 import scipy.special as special

10

11 omega = symbols(’omega’,real=True, positive=True)
12 R_Lf = symbols(’R_f’,real=True, positive=True)

13 phi = symbols(’phi’,real=True, positive=True)

14 rho_0 = symbols(’rho_0’,real=True, positive=True)
15 mu = symbols(’mu’,real=True, positive=True)

16 lambda_0 = symbols(’lambda_o’,rea1=True, positive=True)
17 C_p = symbols(’C_p’,real=True, positive=True)

15 delta_v = sqrt(mu/(I*rho_O*omega))

19 theta = symbols(’theta’)

20 iota = symbols(’iota’)

21 sigma = symbols(’sigma’)

23 bet = sqrt(1-phi)

24 R = R_f/bet

25 p = R/delta_v

26 q = p*bet

28 A = -log(bet) -p**2*(phi/4+(2-phi)*log(bet)/4)

) B=bet*pxlog(bet) /2
30 C=p*log(bet)/2

31 E=1/p

32 F=2/(bet*p)

33 G=-phi/(2xbet)

5 Pi_v=delta_v**2*%(R**2*phi*A+2*R*delta_v*(C-bet*B))/(R**2*%(2-phi)*A+2*xRxdelta_v*(C+
bet* (2%B-F) ) +4*R*bet*x*2xdelta_v*E-8xbet*delta_v**x2%G)
36 simplify (Pi_v)

38 Pi_z=delta_v**2*(R*phi*xE+2*xbet*delta_v*G)/(R*(2-phi)*E-2*B*xdelta_v*G)
30 simplify (Pi_z)

Listing D.1: Code C
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Appendix E

Code D - Low Frequency Signal
(Thermal effects)

1 from sympy import *

init_session ()
+ init_printing ()

6 from sympy import *

7 import numpy as np

g import scipy.integrate as integrate
9 import scipy.special as special

10

omega =

symbols (’omega’,real=True,

positive=True)

3 phi =

R_f = symbols(’R_f’,real=True,
symbols (’phi’,real=True,

positive=True)
positive=True)

rho_0 =

symbols (’rho_0’,real=True,

positive=True)

mu = symbols(’mu’,real=True, positive=True)

16 lambda_0 = symbols(’lambda_o’,rea1=True, positive=True)
17 C_p = symbols(’C_p’,real=True, positive=True)

18

19 delta_t = sqrt(lambda_0/(I*C_p*rho_O*omega))

20 bet = sqrt(1-phi)

21 R = R_f/bet

2 p2 = R/delta_t

24 Xi=delta_t#**2*(l+delta_t**2/(1-p2**2xlog(bet*p2)/2))
26 Xi_O=re (Xi)

28 simplify (Xi_0)
Listing E.1: Code D
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