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1 Introduction
This internship is a continuation of the work done in a project earlier this year. During this
project, we saw that Graph Convolutional Networks can achieve good results even when the
underlying graphs are modified by local refinements or global deformations. We were in fact
able to construct a robust classification model on the MNIST dataset. Moreover, we made a
model able to detect the border between two areas in a signal, in simple cases.

In this internship, we focused on two problem. The first one is improving the Burgers’
equation resolution by dynamic refining. To do so, the previous work done will be reused
and improved.
The second problem is to define an interpolation operator on unstructured mesh in order to
solve the linear transport equation by using the semi-Lagrangian method.

This internship was realized at the UFR de Mathématiques et Informatique, and was su-
pervised by Emmanuel Franck, Laurent Navoret, Vincent Vigon and Laurène Hume. I would
like to thank them for their guidance and availability throughout this internship.

I will present in this report the different results we achieved, and the possible improvements
that could be performed.
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2 Graph convolutional networks
Let us start by giving some general definitions about graphs and meshes. Moreover, we will
define some graph neural networks’ layers, and explain the model notations that we will be
using throughout the report.

2.1 Graph definitions

A graph is a pair G = (V, E), where V is a set whose elements are called nodes, and E is a
set of paired nodes, whose elements are called edges. Let N be the number of nodes in G,
i.e. the cardinal of V . We can then arbitrarily index the set E and note (ni)

N
i=1 its elements.

The degree of a node ni is noted d(ni) and is the number of nodes nj in V such that (ni, nj)
is in E.
We can associate two N ×N matrices to a graph: the adjacency matrix A and the degree
matrix D. The degree matrix D is a diagonal matrix with diagonal Dii = d(ni). The
adjacency matrix A is defined by:

Aij =

{
1 if (ni, nj) ∈ E
0 else

We can see that the diagonal of D is constituted of the sum of the respective rows of A.
Moreover, we will only consider undirected graphs i.e. graphs such that (ni, nj) ∈ E implies
(nj, ni) ∈ E. As a result A is a symmetric matrix.
The neighborhood of a graph node ni is the set of nodes nj such that (ni, nj) is in E.
Moreover, the p-hop neighborhood of a node ni is the set of nodes that are reachable from
ni by following a path of p of fewer edges.

In this project we will use particular graphs called meshes. More precisely, we consider
triangle meshes. A triangle mesh is a set of triangles in R2 that are connected by their
common edges or corners. So we can see it as a graph whose nodes (ni) in V are the corners
of the triangles, and an edge (ni, nj) ∈ E is represented by the segment [ni, nj].

2.2 Convolutional ayers

Our models will be sequences of layers put one after the other, using the model object from
the Keras library [1]. Each graph convolutional layer computes d′ dimensional representations
for the nodes of the graph through recursive neighborhood diffusion and message passing,
where each graph node gathers features from its neighbors to represent local graph structure.
This way, stacking p GCN layers allows the network to build node representations from the
p-hop neighborhood.
More precisely, let X l

i ∈ Rd denote the feature vector of the node ni at the layer l. Then
the updated features X l+1

i ∈ Rd′ at the next layer l + 1 are obtained by applying non-linear
transformations to the central feature vector X l

i and the feature vectors X l
j for all the nodes

nj in the neighborhood of node ni.
This way, the network builds local reception fields, like in standard convolutional layers, and
more importantly is invariant by graph size and nodes re-indexing.
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2.2.1 Vanilla GCN

The Vanilla GCN layer is a graph convolutional layer. It is one of the simplest GCN layers
and updates node features via an averaging operation over the neighborhood node features.
It takes node features X ∈ RN×d and an adjacency matrix A ∈ RN×N as input. The Vanilla
GCN layer computes X ′ ∈ RN×d′ by:

X ′ = η
(
D̂−1/2ÂD̂−1/2XW + b

)
where η : R→ R is an activation function applied on each component of its input, Â = A+IN
is the adjacency matrix of the graph G with self-loops added and D̂ its degree matrix. The
matrix W ∈ Rd×d′ is a trainable weights matrix, and b ∈ Rd′ is trainable bias vector.
As we can see this layer computes for each node a weighted average of the feature of the
nodes in his neighborhood.
In our models, a Vanilla GCN layer having d′ output channels will be noted GCN(d’). This
layer is implemented in Spektral [4].

2.2.2 ChebConv

Like before we denote by X ∈ RN×d the input node features and A ∈ RN×N the adjacency
matrix. The ChebConv layer computes:

X ′ = η

(
K−1∑
k=0

Tk(L̂)Wk + bk

)
,

where η : R→ R is an activation function and T0, T1, . . . , TK−1 are Chebyshev polynomials
defined as:

T0(L̂) = X, T1(L̂) = L̂X, Tk(L̂) = 2L̂Tk−1(L̂)− Tk−2(L̂) for k ≥ 2,

and where:

L̂ =
2

λmax

(IN −D−1/2AD−1/2)− IN

is the normalized Laplacian of the graph G. Here λmax denotes the biggest eigenvalue of
IN −D−1/2AD−1/2. This way L̂ has its eigenvalues between -1 and 1.
The Wk ∈ Rd×d′ are K trainable weights matrix, and the bk ∈ Rd′ are K trainable bias
matrices. The parameter K defines the number of hops in which each node gathers features
from its neighbors.
A ChebConv layer with d′ output channels will be denoted by Cheb(d’) in the rest of the
report. This layer is implemented in Spektral [4].

2.3 Pooling Layers

The previous convolutional layers are layers that compute new node features, but never
change the graph structure. However, we might want to consider the same graph but at
different resolutions. To do so, pooling layers are needed. They can be used to enlarge
receptive fields, thereby giving rise to better generalization and performance.
In this section I will present two graph pooling layers that I used during this internship.
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2.3.1 Top-k pooling

This first layer is the Top-k pooling layer and was proposed in [3]. This layer selects a subset
of nodes to form a smaller graph. To do so, a trainable vector p ∈ Rd is used. All the node
features are projected in 1D using this vector. More precisely, if ni is a node and Xi ∈ Rd

is its node features, then the projection will be yi = Xi · p/‖p‖ ∈ R. This scalar measures
how much information of the node ni is retained when projected onto p. By down-sampling
the graph, we wish to preserve as much node information as possible. This is achieved by
selecting the nodes having the largest scalar projection on p to form the new graph.
The layer realizes the following operations:

y = X · p/‖p‖,
idx = rank(y, k),

ỹ = sigmoid(y(idx)),

X̃ = X(idx, :),

A′ = A(idx, idx),

X ′ = X̃ � (ỹ1T
d ),

where k is the number of nodes in the resulting graph and rank(y, k) returns the indices of
the k largest values in y. The matrices X ′ ∈ Rk×d and A′ ∈ Rk×k are the output of the
pooling layer. The output of this layer only depends of the inputted node features X and
the trainable vector p.
On Figure 1 we can observe example of the Top-k pooling layer applied to a regular mesh of
the unit square. The node features of each node of the mesh are its position, so d = 2. The
projection vector p used for this pooling was (1, 1).

Figure 1: Initial mesh (left) and pooled mesh (right).

The initial mesh had 142 nodes, and the pooled mesh had 71 nodes, so we reduced its size by
half. As we could have expected, only the nodes ni of position (xi, yi) verifying xi + yi ≥ 0.5
were conserved in the pooled mesh.
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2.3.2 k-Means pooling

During this internship, we also developed a second pooling layer. This time, the pooling
results only depend on the nodes’ positions in the mesh, and not the node features.
The k-Means pooling layer is based on the k-mean clustering algorithm. Its only parameter is
k indicating how many nodes are parts of the pooled mesh. The pooling process is described
as follow:

• we compute k clusters (Ci)1≤i≤k of the inputted nodes using the k-means clustering
algorithm,

• the k centers (ñi) of those clusters are the nodes of the new mesh,

• we construct the adjacency matrix A′ ∈ Rk×k of the new mesh by using the Delaunay
triangulation,

• we need to give node features to the centers (ñi). To do so, each center ñi will have the
node feature

X ′i = gather(X, Ci),

where gather(X, Ci) combines the node features of all the nodes (nj) in Ci into a new
node feature X ′i ∈ Rd. For example X ′i can be the element wise maximum or average of
all the node features of the nodes in the cluster Ci.

On Figure 2 we can observe a simple example of the k-Means pooling layer. The input mesh
is a regular mesh of the unit square. The number of nodes is reduced to 1% compared to the
inputted mesh. The input node features X ∈ RN×1 are simply Xi = xi + yi where (xi, yi)
are the positions of the node ni.

Figure 2: Initial mesh (left), clusters (center), and pooled mesh (right).

In this example, the node features of the cluster center is the maximum of all the node
features of the nodes in the cluster.

2.3.3 k-Means unpooling

After reducing a mesh by applying a pooling layer, it can be interesting to up-sample this
pooled mesh into the original mesh.
Let say that we have an original mesh with N nodes, and node features X ∈ RN×d. After
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applying a k-Means pooling layers, we obtain clusters (Ci)1≤i≤k and new node features X ′ ∈
Rk×d. To reconstruct node features X ′′ ∈ RN×d for the original mesh, we simply define:

X ′′j = X ′i for all j ∈ Ci.

By doing so we obtain the following result:

Figure 3: Initial node features (left), pooled node features (center), and unpooled node features (right).

On a less trivial example we obtain such results:

Figure 4: Initial node features (left), pooled node features (center), and unpooled node features (right).

Here the pooled mesh has 50% less nodes than the original mesh.
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3 Frontier detection

3.1 Frontier dataset

During my previous project on graph convolutional networks and their applications, I studied
a frontier detection problem. The problem consists of detecting the position of the frontier
between two areas on a mesh.
There are 3 different types of areas, so the frontier dataset is subdivided in 3 parts:

- Island dataset: the two areas are two randomly generated oscillating signals.

- Semi-trivial dataset: same as the island dataset, but there is an offset between the two
zones so that the frontier is more distinguishable.

- Trivial dataset: the two areas are different constant values.

Here are some examples from each dataset:

Figure 5: Input node features (top) and expected output (bottom).

3.2 Previous results

During my previous work, the network I used was simply a sequence of convolutional layers
put one after the other. The mesh was not modified via pooling or unpooling.
Such a simple model was complex enough to solve the frontier detection on the trivial dataset.
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However as we can see on Figure 6, the network struggled to detect the frontier on the islands
and semi-trivial dataset.

Figure 6: Old model results on the islands dataset.

The conclusion was that the model was not complex enough, and that a change in its archi-
tecture was necessary.

3.3 U-Net architecture

The U-Net architecture was first developed for biomedical image segmentation. The network
consists of a contracting path and an expansive path, which gives it the u-shaped architec-
ture.
The contracting path consists of convolutional layers followed by pooling layers. After each
pooling, the number dimension of the node features is increased to compensate with the
reduction of the mesh. The expansive path reconstructs the initial mesh using convolutional
layers followed by unpooling layers. Moreover, the expansive path reuses previously com-
puted node features during the contracting path via concatenation.
The models I used in this internship were U-Net networks with a depth of 3, i.e. 3 pooling lay-
ers and 3 unpooling layers. A simplified representation of the model can be seen on Figure 7.
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Figure 7: Architecture of the model used.

3.4 Results

For the U-Net architecture, we have the liberty of choosing what type of pooling and un-
pooling layers we will use. Same for the convolutional layer.
My first try was to use the Top-k pooling and unpooling layers, with the Vanilla GCN con-
volutional layer. The model was implemented using the KGCNN library [5]. However the
model was not able to give satisfying results on the trivial dataset. In fact, as outlined in the
paper [2], the Top-k pooling layer has a major issue. The nodes that are connected usually
share similar node features, and their similarities further increase after the convolutional
layers. As a result, those nodes will have a similar score and when selecting the top k nodes,
entire portions of the mesh are discarded, making it hard to recover the information during
the unpooling layers.
As a result I changed the pooling and unpooling layers from Top-k to k-Means. Each pooling
layer reduced its inputted mesh by 75%. The model was then able to detect the frontier in
the trivial case. Moreover, it was able to accurately detect the frontier in the semi-trivial
case, which was a breakthrough from the previous sequential model:

Figure 8: Input (left), model prediction (middle), expected output (right).
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However, the model still was not able to detect the frontier in the islands dataset. Therefore,
I changed the convolutional layer used in the U-Net architecture from the Vanilla GCN layer
to the ChebConv layer, with the parameter K = 3. It resulted in the model having more
trainable parameters (about 1 million) and being more complex. With this modification, the
model was finally able to detect the frontier in the three cases, including the islands dataset:

Figure 9: Input (left), model prediction (middle), expected output (right).

As we can see on Figure 9, the model is even able to locate the discontinuity when it is near
the border of the mesh.
The model was trained 1500 signals, for a duration of about 2.5 hours. I used the v100 GPU
made available to me by the university. The loss function used during training is the dice
loss:

d(p, q) = 1− 2

∑
i piqi∑

i(pi + qi)
.

The numerator is the sum of nodes being properly predicted as being on the frontier, and
the denominator is the sum of total nodes of both prediction and ground truth. The model
achieved a final loss of 0.29 on the test set.
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4 Burgers’ equation and dynamic refining
The Burgers’ equation is a partial differential equation used in multiples fields such as fluid
mechanics or traffic flow. In my internship I considered the 2-dimensional case of the Burgers’
equation, which can be written as:

∂tρ(t, x) +∇ ·
(
a
ρ(t, x)2

2

)
= 0 (1)

where ρ : R+ × R2 → R, a ∈ R2 and t ∈ [0, T ].
To solve this equation numerically, multiple methods are available. For example, we can
use the kinetic relaxation method or the finite volume method. I personally used the finite
volume method as it was easily implementable with my current mesh data structure.

4.1 Finite volume method

The finite volume method allows us to transform partial differential equations into algebraic
equations. To do so, the volume integrals that contain a divergence term are converted to
surface integrals by using the divergence theorem.
Let us suppose we have a triangle mesh Ω composed of the triangles Ωj, j = 1, . . . , M , and
let us denote by (tn), n = 1, . . . , N a finite discretization of the interval [0, T ]. By ρnj we
define:

ρnj =
1

|Ωj|

∫
Ωj

ρ(tn, x) dx

where |Ωj| is the area of the triangle Ωj. Moreover, let Ej be the set of indices k such that
the triangle Ωk has a common edge with the triangle Ωj. Let k be in Ej. By djk we denote
the length of the common edge between the triangles Ωj and Ωk, and by njk we denote the
outward normal of the edge. See Figure 10:

Figure 10: Notations used for the finite volume method.

Then, using the divergence theorem, Equation (1) can be rewritten:

|Ωj|
ρn+1
j − ρnj

∆t
+
∑
k∈Ej

djkF (ρj, ρk) = 0,

where:

F (ρnj , ρ
n
k) =

1

2

[
a · njk

(
ρnj

2 + ρnj
2
)

+ max
(
|a · njkρ

n
j |, |a · njkρ

n
k |
)

(ρnj − ρnk)
]
.
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This gives us the relation:

ρn+1
j = ρnj −

∆t

|Ωj|
∑
k∈Ej

djkF (ρnj , ρ
n
k).

For the method to converge, we must impose a CFL condition on the time step ∆t. In fact,
at every time tn, the time step must verify:

∆t < CFL .
‖Ω‖

‖a‖‖ρn‖∞
,

where ‖Ω‖ is the length of the smallest edge in the mesh Ω, and CFL is a small constant
strictly smaller than 1. In my programs, CFL = 0.08.

4.2 Boundary conditions

In general, the mesh’s triangles have 3 neighboring triangles, except for the triangles on the
boundary of the mesh. Those triangles need to be treated separately depending on the value
of ρn. Let us suppose that Ωj is a triangle on the boundary of the mesh Ω, i.e. has only 2
and not 3 neighboring triangles. Let nj be the outward normal of the edge of Ωj not having
any neighboring triangles, and dj its length.

Figure 11: Notations used for the finite volume method on the boundary triangles.

We need to consider two cases:

• If a · nρnj < 0, which means that the quantity ρnj is entering the mesh, we impose

ρn+1
j = ρnj .

• If a · nρnj ≥ 0, which means that the quantity ρnj is leaving the mesh, we subtract

∆t

|Ωj|
djF (ρnj , ρ

n
j )

to ρn+1
j . It is equivalent to adding a ghost triangle outside of the mesh with the value

ρj such that Ωj has 3 neighboring triangles.

4.3 Examples of solutions

In the following section the mesh Ω will be a triangle mesh of the unit square. Let us look
at a first example, where ρ0 is equal to:

ρ(0, x, y) = sin(5πx) sin(5πy),

13



and a = (1, 0). Using the method described in the previous sections, we obtain the following
results at t = 0.05s:

Figure 12: Initial solution (left) and final solution (right) at t = 0.05s

As we can see on Figure 12 the positive parts of the sine wave moved in the direction given
by a, and the negative parts of the sine wave moved in the opposite direction. Moreover, we
can observe oscillations at the intersection between the positive and negative parts of the sin
wave at t = 0.05s.
Let us observe another example, this time using a = (1, 1), and where the initial solution is
more random. Here are the initial solution and the final solution:

Figure 13: Initial solution (left) and final solution (right) at t = 0.05s

The same observations can be made on Figure 13: discontinuities appeared at the intersection
of the positive and negative parts of the solution. As a result the solution computed has
oscillations at those positions, and is not as precise as we would like.

4.4 Dynamic refining

To try and solve this problem, we can use a much finer mesh, i.e. a mesh with more trian-
gles. However this solution is inefficient because the discontinuities appear only at precise
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small parts of the mesh. Another solution is to refine the mesh while we are computing the
final solution. The refining will occur when we are observing discontinuities in the current
solution. By doing so we can hope that the final solution will be more accurate.
To detect the discontinuities, I used the model trained in Section 3. But in order to use the
model, we need to transform the Burgers’ solutions into node features. Indeed, currently the
Burgers’ solutions consist of an array of values for each triangle of the mesh. To get node
features, I simply give to a node ni the average value of every triangle ni is a part of.
On Figure 14 I display different predictions made by the model on Burgers’ solutions. The
first prediction is made on a solution similar to the training dataset of the model. As we can
see, the model correctly predicts the position of the discontinuities.
However we can ask ourself how good the model will be able to generalize on solutions sig-
nificantly different than the ones in its training set. The second and third predictions on
Figure 14 show that the model is still able to accurately detect the discontinuities, which is
reassuring.
Another question that we can ask ourself is how the model behaves when given input solu-
tions without any discontinuities. In fact, the model was only trained on signals containing
discontinuities, so some unexpected behaviors can be expected. To be sure, I evaluated the
model on initial Burgers’ solution which are continuous. The results can be seen on Fig-
ure 15. As we can observe, the model does not detect any discontinuities. Once again this
is reassuring, and indicates that this model will be usable to dynamically refine our mesh
during the calculation of Burgers’ solutions.
Now let us describe the pipeline used for dynamic refining. I suppose that we have a starting
mesh Ω and an initial solution ρ0. Then:
While t < T :

• update ∆t and compute the solution for this time step on the mesh Ω,

• transform the triangles features of the solution to node features via averaging,

• use the model to get a prediction on the discontinuities positions if they exist,

• if discontinuities are detected:

– replace Ω by refining it around those discontinuities. To do so, we refine the triangles
around the nodes detected as being on discontinuities by subdividing them into 3
sub-triangles.

– update ∆t and compute the solution a second time on the new mesh.

However, a problem emerges from the CFL conditions. In fact, every time a mesh Ω is refined
into a mesh Ω′, we have ‖Ω′‖ ' ‖Ω‖/2. As a result, if we refine the mesh every time the model
detects discontinuities, the time step ∆t will tend to 0, and the calculations of the Burgers’
solution will take an enormous amount of time. To solve this problem I fixed a maximal
amount of refining. Moreover, the mesh will be refined only after discontinuities have been
detected for a certain amount of time. In practice, the maximum amount of refining is fixed
to 4 and the time to wait between refinements is set to 0.008 seconds.
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Figure 14: Final Burgers’ solutions (left), and model predictions (right).
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Figure 15: Initial Burgers’ solutions (left), and model predictions (right).
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4.5 Results

In this section I will compare the final Burgers’ solution obtained with or without dynamically
refining the mesh. We denote ρ as the solution computed without refinements and ρdyn the
one compute with refinements.
To be able to numerically compare the two solutions, I need to have a solution that I deem
being as accurate as possible. This third solution will be obtained by computing the Burgers’
solution a third time, but on a much finer mesh Ωref . We denote this solution by ρref . This
way, the discontinuities observed previously will be less pronounced on ρref .
Once this solution ρref is computed, I will project the two other solution ρ and ρdyn on the
finer mesh. These projections will be computed using the griddata function from the SciPy
library [6].
Now that I have all three solutions on the same mesh, I can compute the L1 error:

‖ρref − ρdyn‖L1 =
∑
j

| (Ωref)j ||(ρref)j − (ρdyn)j|,

and the same error for ρ. This will tell us if the dynamic refining of the mesh allowed us to
achieve better results.
The initial solution used is the one presented on Figure 13, and a = (1, 1). Here is the
solution ρ obtained at t = 0.04s without any refinements:

Figure 16: ρ (left), and the model prediction (right).

The solution ρdyn obtained with 4 refinements can be observed on Figure 17. We can
already remark that the oscillations are less present on ρdyn. Indeed, on the right part of the
figure we can see that the mesh has been refined at the discontinuities locations as desired.
The solution computed on a much finer mesh, ρref , is shown on Figure 18.
The two projected solutions are displayed on Figure 19 along with the respective errors
relative to ρref . As expected, the errors are smaller in the case of the dynamically refined
solution ρdyn.
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Figure 17: ρdyn (left), and the model prediction (right).

Figure 18: ρref (left), and the model prediction (right).

Figure 19: Projections of ρ (left) and of ρdyn on the finer mesh.
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5 Transport equation and interpolation prob-
lem

A transport equation is an equation describing the displacement of some quantity. More
precisely it can be written as:

∂tu+ a(x) · ∇xu = 0 (2)

where u : R+ × R2 → R is the quantity and a : R2 → R2 is the direction.

5.1 Semi-Lagrangian method

We can compute a solution to Equation (2) by introducing characteristic curves. A charac-
teristic curve, denoted by Xs, y : R+ → R2, is defined as the solution of:{

X ′(t) = a(t, X(t)),
X(s) = y.

Suppose we have a discretization of tn = n∆t, n = 1 . . .M of the interval [0, T ], where
∆t > 0 and tM = T . Moreover, let Ω denote a triangle mesh of the unit square, with its
nodes denoted by (xj)j=1...N . The solution u on Ω can then be computed as:

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj

(tn)).

However, the point Xtn+1,xj
(tn) ∈ R2 is not necessarily a node of the mesh Ω. The semi-

Lagrangian scheme consists of approaching u(tn, Xtn+1,xj
(tn)) by:

u(tn, Xtn+1,xj
(tn)) = (Πun)

(
Xtn+1,xj

(tn)
)
,

where Π is an interpolation operator.
In my internship, I only considered a simplified form of Equation (2) where a is a constant
in R2. This way, the characteristic curves are explicitly known:

Xs,y(t) = y + (t− s)a.

As a result the semi-Lagrangian scheme can be written as:

un+1
j = (Πun) (xj − a∆t) .

5.2 Interpolation problem

As seen in the previous section, we need to have an interpolation operator in order to solve
the transport equation. In fact, let ΩT be the mesh Ω but translated, i.e. the mesh whose
nodes are (xj − a∆t)j=1...N . We can reconstruct a new mesh Ω̃ of the unit square by joining

the two meshes Ω and ΩT . The nodes of the mesh Ω̃ are the nodes of Ω and ΩT who are in
the unit square, and the triangles are computed using Delaunay triangulation. The initial
solutions I considered are functions with compact support, so the nodes of ΩT which are
outside the unit square will have a fixed value equal to zero. An example of the mesh Ω̃ can
be seen on Figure 20.
The yellow nodes are the nodes of Ω while the purple nodes are the nodes of ΩT . The
interpolation operator Π will need to be able to interpolate values from the yellow nodes
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Figure 20: Mesh Ω̃ on which we will apply the interpolation operator Π.

to the purple nodes. To do so, I trained a graph convolutional network having the U-Net
architecture described on Figure 7. In fact, the U-Net architecture is adapted to interpolation
problems. The dataset used for training the dataset consists of a modified version of the
frontier dataset. The input signals to our model are frontier signals to which I have fixed
50% of the node features to zero. The expected output is the signals but without any node
features missing. Some examples of signals in the modified dataset are available on Figure 21

Figure 21: Input (left) and expected output (right).

After training the model, I compared it to the interpolation operator griddata from the
library SciPy [6]. The comparison can be found on Figure 22.
As we can see, the U-Net and the griddata interpolation operators give similar results.
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Figure 22: Input (left) and expected output (right).
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5.3 Results

Now that we have our interpolation operator, we can solve the transport equation. In all our
examples, we have a = (1, 1). The first example, seen on Figure 23, is the displacement of a
square with sharp edges. I plotted different solutions, each computed using different ∆t. The
smaller ∆t is, the more interpolation steps are done. As we can see, the more interpolation
steps are computed, the less precise our solution becomes, and the smoother the edges are.
To be able to compare those solutions, I recomputed them using the griddata interpolation
operator from Scipy. Those new solutions are displayed on Figure 24. As we can see, those
solution are a bit more precise, but the square edges are still smoothed.
In the next example, I used a Gaussian function as initial solution. The results using the U-
Net interpolation model can be observed on Figure 25. We can notice the same phenomenon
than in the first example: the more interpolation steps are done, the less precise our solution
is. As a result, the last solution is heavily degraded. On the other side, the solutions
computed using the griddata interpolation operator shown on Figure 26 are precise and do
not show any degradation after multiple interpolation steps.
Another observation is that for example on Figure 23 or Figure 25, the model outputs values
smaller or larger than the ones on its input, indicating that the model is instable.
The differences observed between those two operators could be explained by the training
dataset of the U-Net model. In fact, during training the U-Net model is only trained on
regular triangle meshes. However, as it can be seen on Figure 20, the mesh on which the
interpolations steps are done is very different than the one used during training. As a result,
the model does not behave as good as expected. To improve the interpolation, I could have
trained the model on different meshes similar than the one on Figure 20.
A second possible improvement to the model could be made by modifying the way it is
trained. Indeed, we could train compositions of the model and not the model itself. This
way the training would force the model to be stable by multiple successive composition.
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Figure 23: Solutions computed using the U-Net interpolation model.

Figure 24: Solutions computed using the griddata interpolation operator.
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Figure 25: Solutions computed using the U-Net interpolation model.

Figure 26: Solutions computed using the griddata interpolation operator.
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6 Conclusion
We saw in this internship that the U-Net architecture, usually used by conventional convo-
lutional neural networks, can be efficiently used in the context of graph convolutional neural
networks. In fact, the U-Net architecture allowed us solve the frontier detection problem,
problem that simple sequential GCNs were not able to solve.
This breakthrough allowed us to build an effective discontinuity detection model. This model
was then used to compute precise Burgers’ solution by using dynamic refining. This pipeline
of dynamic refining could however be improved. In fact, a model indicating where the mesh
could be unrefined would be a big improvement. Moreover, we saw that we had to limit
the total number of refinement because of the time step constraints. Using another method
than the finite volume method, without time constraints, would allow us to refine our mesh
without limitations.
Finally, a variance of this U-Net frontier detection model allowed us to build an interpolation
operator and to solve linear transport equations using the semi-Lagrangian method.
However, the model in its current state does not yield acceptable results. Indeed, we saw
that the interpolation operator in unstable, resulting in bad results after multiple iterations.
To try and solve this issue, we could change the training dataset. Moreover, we could change
the way the model is trained so that it becomes stable by multiple successive compositions.
To do so we would need to train the model based on its output after a fixed number of
compositions, and not after only one iteration.
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7 Internship and tools used

7.1 Internship

7.1.1 Organization

This internship was realized at the UFR de Mathématiques et d’Informatique at Strasbourg.
Due to the pandemic, I mostly worked remotely from my home. Moreover, weekly video-
conferences where organized with my supervisors. It allowed me to present the work I had
done and the results I got during the week. Furthermore, it allowed us to talk about my
problems and try to solve them.
The internship lasted 8 weeks. During the first few weeks, I mostly worked on the frontier
detection problem. I tested and developed multiples convolutional and pooling layers, until
I had satisfying results.
During the time left, I simultaneously worked on the Burgers’ equation and the transport
equation/interpolation problem.

7.1.2 Experience earned

This internship was enriching for me and allowed me to develop new skills and/or improve
skills acquired during the M1, such as:

• Machine learning: I learned new machine learning algorithms and pipelines, which makes
me now more comfortable in this domain.

• PDE solving methods: I also studied new methods for resolving various PDEs.

• Python development: I learned concepts about Python development that I was not
aware of before. It made the programming during my internship easier and smoother.

7.2 Tools used

The totality of this project was coded in Python using the Visual Studio Code integrated
development environment. This IDE allowed me to write and execute code directly on the
v100 remote machine made available to me by the University of Strasbourg. This remote
server contains a v100 GPU, which is fast and efficient for machine learning projects.
The machine learning models where created using the library Keras and Tensorflow [1]. It is
a library created and maintained by Google facilitating the training of neural networks.
The library Spektral [4] gave me access to the VanillaGCN and ChebConv convolutional
layers, and made me able to create pipelines for dataset generation and loading.
The meshes were created using the Python API PyGMSH of Gmsh (github).
The Frontier dataset generation code was written by Vincent Vigon. All the other features
where coded by myself and are available on Github (link).
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