
Graph Convolutional Networks
and some applications

Corentin MENGEL,
under the supervision of Vincent VIGON, Emmanuel FRANCK,

Laurent NAVORET and Laurène HUME

August 24, 2021

Introduction

continuation of the previous project

GCNs achieve good results even after modifications of the graph

develop a new model and use it in two problems:

I discontinuities detection and Burgers’ equation

I interpolation problem and linear transport equation

Introduction

continuation of the previous project

GCNs achieve good results even after modifications of the graph

develop a new model and use it in two problems:

I discontinuities detection and Burgers’ equation

I interpolation problem and linear transport equation

Introduction

continuation of the previous project

GCNs achieve good results even after modifications of the graph

develop a new model and use it in two problems:

I discontinuities detection and Burgers’ equation

I interpolation problem and linear transport equation

Introduction

continuation of the previous project

GCNs achieve good results even after modifications of the graph

develop a new model and use it in two problems:

I discontinuities detection and Burgers’ equation

I interpolation problem and linear transport equation

Introduction

continuation of the previous project

GCNs achieve good results even after modifications of the graph

develop a new model and use it in two problems:

I discontinuities detection and Burgers’ equation

I interpolation problem and linear transport equation

Definitions

Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors

Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors

Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors

Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors

Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors

Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors

Definitions: pooling layers

inconvenient: convolutional layers do not change the mesh
structure

new layers reducing the graph resolutions

enlarge receptive field for better performance and generalization

⇒ pooling layers

Definitions: pooling layers

inconvenient: convolutional layers do not change the mesh
structure

new layers reducing the graph resolutions

enlarge receptive field for better performance and generalization

⇒ pooling layers

Definitions: pooling layers

inconvenient: convolutional layers do not change the mesh
structure

new layers reducing the graph resolutions

enlarge receptive field for better performance and generalization

⇒ pooling layers

Definitions: pooling layers

inconvenient: convolutional layers do not change the mesh
structure

new layers reducing the graph resolutions

enlarge receptive field for better performance and generalization

⇒ pooling layers

Definitions: Top-k pooling

inputs: mesh Ω, nodes features X , integer k ,
output: new mesh with k nodes

selects subset of nodes to form a smaller graph

a score yi ∈ R is associated to each node ni of Ω

yi = Xi · p/‖p‖

p trainable vector

the new mesh has the k nodes with the highest score

Definitions: Top-k pooling

inputs: mesh Ω, nodes features X , integer k ,
output: new mesh with k nodes

selects subset of nodes to form a smaller graph

a score yi ∈ R is associated to each node ni of Ω

yi = Xi · p/‖p‖

p trainable vector

the new mesh has the k nodes with the highest score

Definitions: Top-k pooling

inputs: mesh Ω, nodes features X , integer k ,
output: new mesh with k nodes

selects subset of nodes to form a smaller graph

a score yi ∈ R is associated to each node ni of Ω

yi = Xi · p/‖p‖

p trainable vector

the new mesh has the k nodes with the highest score

Definitions: Top-k pooling

inputs: mesh Ω, nodes features X , integer k ,
output: new mesh with k nodes

selects subset of nodes to form a smaller graph

a score yi ∈ R is associated to each node ni of Ω

yi = Xi · p/‖p‖

p trainable vector

the new mesh has the k nodes with the highest score

Definitions: Top-k pooling

inputs: mesh Ω, nodes features X , integer k ,
output: new mesh with k nodes

selects subset of nodes to form a smaller graph

a score yi ∈ R is associated to each node ni of Ω

yi = Xi · p/‖p‖

p trainable vector

the new mesh has the k nodes with the highest score

Top-k pooling example

Xi = node position, p = (1, 1)

Figure: Initial mesh (left) and pooled mesh (right).

Definitions: k-Means pooling

pooling based on the k-Means clustering algorithm

inputs: mesh Ω, integer k , output: new mesh with k nodes

I compute k clusters of the nodes of Ω

I center of the k clusters → nodes of the new mesh

I new node features = average of the node features in the
clusters

Definitions: k-Means pooling

pooling based on the k-Means clustering algorithm

inputs: mesh Ω, integer k , output: new mesh with k nodes

I compute k clusters of the nodes of Ω

I center of the k clusters → nodes of the new mesh

I new node features = average of the node features in the
clusters

Definitions: k-Means pooling

pooling based on the k-Means clustering algorithm

inputs: mesh Ω, integer k , output: new mesh with k nodes

I compute k clusters of the nodes of Ω

I center of the k clusters → nodes of the new mesh

I new node features = average of the node features in the
clusters

Definitions: k-Means pooling

pooling based on the k-Means clustering algorithm

inputs: mesh Ω, integer k , output: new mesh with k nodes

I compute k clusters of the nodes of Ω

I center of the k clusters → nodes of the new mesh

I new node features = average of the node features in the
clusters

Definitions: k-Means pooling

pooling based on the k-Means clustering algorithm

inputs: mesh Ω, integer k , output: new mesh with k nodes

I compute k clusters of the nodes of Ω

I center of the k clusters → nodes of the new mesh

I new node features = average of the node features in the
clusters

k-Means example

Figure: Initial mesh (left), clusters (center), and pooled mesh (right).

Frontier detection problem

Frontier detection: dataset
problem: detect the frontier between to areas on a mesh

3 types of areas:

Figure: Trivial dataset (left), semi-trivial dataset (center) and islands
dataset (right).

Frontier detection: dataset
problem: detect the frontier between to areas on a mesh

3 types of areas:

Figure: Trivial dataset (left), semi-trivial dataset (center) and islands
dataset (right).

Frontier detection: previous results

simple sequential model: GCN layers put one after the other

worked only on the trivial dataset

Figure: Old model results on the islands dataset.

Frontier detection: previous results

simple sequential model: GCN layers put one after the other

worked only on the trivial dataset

Figure: Old model results on the islands dataset.

Frontier detection: U-Net architecture

more complex architecture

model: contractive + expansive path

Figure: Architecture of the model used.

3 pooling layers and 3 unpooling layers

Frontier detection: U-Net architecture

more complex architecture

model: contractive + expansive path

Figure: Architecture of the model used.

3 pooling layers and 3 unpooling layers

Frontier detection: U-Net architecture

more complex architecture

model: contractive + expansive path

Figure: Architecture of the model used.

3 pooling layers and 3 unpooling layers

Frontier detection: results

first model: U-Net with Vanilla GCN layers and Top-k pooling
layers

⇒ bad results: Top-k pooling discard big portions of the graph

second model: replace Top-k pooling by k-Means pooling
⇒ good results on trivial/semi-trivial dataset

Figure: Input (left), model prediction (middle), expected output (right).

Frontier detection: results

first model: U-Net with Vanilla GCN layers and Top-k pooling
layers
⇒ bad results: Top-k pooling discard big portions of the graph

second model: replace Top-k pooling by k-Means pooling
⇒ good results on trivial/semi-trivial dataset

Figure: Input (left), model prediction (middle), expected output (right).

Frontier detection: results

first model: U-Net with Vanilla GCN layers and Top-k pooling
layers
⇒ bad results: Top-k pooling discard big portions of the graph

second model: replace Top-k pooling by k-Means pooling

⇒ good results on trivial/semi-trivial dataset

Figure: Input (left), model prediction (middle), expected output (right).

Frontier detection: results

first model: U-Net with Vanilla GCN layers and Top-k pooling
layers
⇒ bad results: Top-k pooling discard big portions of the graph

second model: replace Top-k pooling by k-Means pooling
⇒ good results on trivial/semi-trivial dataset

Figure: Input (left), model prediction (middle), expected output (right).

Frontier detection: results

second model still unable to detect the border on the islands
dataset

third model: replace VanillaGCN with ChebConv layers
⇒ model more complex/more trainable weights

Figure: Input (left), model prediction (middle), expected output (right).

Frontier detection: results

second model still unable to detect the border on the islands
dataset

third model: replace VanillaGCN with ChebConv layers

⇒ model more complex/more trainable weights

Figure: Input (left), model prediction (middle), expected output (right).

Frontier detection: results

second model still unable to detect the border on the islands
dataset

third model: replace VanillaGCN with ChebConv layers
⇒ model more complex/more trainable weights

Figure: Input (left), model prediction (middle), expected output (right).

Frontier detection: results

second model still unable to detect the border on the islands
dataset

third model: replace VanillaGCN with ChebConv layers
⇒ model more complex/more trainable weights

Figure: Input (left), model prediction (middle), expected output (right).

Burgers’ equation and dynamic refining

Burgers’ equation and dynamic refining

PDE used for example in fluid mechanics or traffic flow

∂tρ(t, x) +∇ ·
(
a
ρ(t, x)2

2

)
= 0 (1)

with ρ : R+ × R2 → R, a ∈ R2 and t ∈ [0, T].

multiple methods: kinetic relaxation or finite volume method

transforms PDE into algebraic equations

Burgers’ equation and dynamic refining

PDE used for example in fluid mechanics or traffic flow

∂tρ(t, x) +∇ ·
(
a
ρ(t, x)2

2

)
= 0 (1)

with ρ : R+ × R2 → R, a ∈ R2 and t ∈ [0, T].

multiple methods: kinetic relaxation or finite volume method

transforms PDE into algebraic equations

Burgers’ equation and dynamic refining

PDE used for example in fluid mechanics or traffic flow

∂tρ(t, x) +∇ ·
(
a
ρ(t, x)2

2

)
= 0 (1)

with ρ : R+ × R2 → R, a ∈ R2 and t ∈ [0, T].

multiple methods: kinetic relaxation or finite volume method

transforms PDE into algebraic equations

Burgers’ equation and dynamic refining

PDE used for example in fluid mechanics or traffic flow

∂tρ(t, x) +∇ ·
(
a
ρ(t, x)2

2

)
= 0 (1)

with ρ : R+ × R2 → R, a ∈ R2 and t ∈ [0, T].

multiple methods: kinetic relaxation or finite volume method

transforms PDE into algebraic equations

Finite Volume Method
mesh Ω, triangles Ωj , tn discretization of [0, T]

final scheme:

ρn+1
j = ρnj −

∆t

|Ωj |
∑
k∈Ej

djkF (ρnj , ρ
n
k).

where:

F (ρnj , ρ
n
k) =

1

2

[
a · njk

(
ρnj

2 + ρnj
2
)

+ max
(
|a · njkρnj |, |a · njkρnk |

)
(ρnj − ρnk)

]

Figure: Notations.

Finite Volume Method
mesh Ω, triangles Ωj , tn discretization of [0, T]
final scheme:

ρn+1
j = ρnj −

∆t

|Ωj |
∑
k∈Ej

djkF (ρnj , ρ
n
k).

where:

F (ρnj , ρ
n
k) =

1

2

[
a · njk

(
ρnj

2 + ρnj
2
)

+ max
(
|a · njkρnj |, |a · njkρnk |

)
(ρnj − ρnk)

]

Figure: Notations.

Example of solutions

Figure: Initial solution (left) and final solution (right) at t = 0.05s,
a = (1, 0).

Example of solutions

Figure: Initial solution (left) and final solution (right) at t = 0.05s,
a = (1, 1).

Dynamic refining
refine the mesh while we are computing the final solution

use the border detection model to detect discontinuities

Figure: Final Burgers’ solutions (left), and model predictions (right).

Dynamic refining
refine the mesh while we are computing the final solution

use the border detection model to detect discontinuities

Figure: Final Burgers’ solutions (left), and model predictions (right).

Dynamic refining
refine the mesh while we are computing the final solution

use the border detection model to detect discontinuities

Figure: Final Burgers’ solutions (left), and model predictions (right).

Dynamic refining

Figure: Final Burgers’ solutions (left), and model predictions (right).

Results

Figure: Solution with refinements (left), and model prediction (right).

Results

Figure: Finer solution (left), and model prediction (right).

Results

Figure: Projections and errors on the finer mesh.

Transport equation and interpolation problem

Transport equation and interpolation problem

equation describing the displacement of some quantity

∂tu + a(x) · ∇xu = 0 (2)

with u : R+ × R2 → R, a : R+ × R2 → R2 the direction.

semi-Lagrangian method

Transport equation and interpolation problem

equation describing the displacement of some quantity

∂tu + a(x) · ∇xu = 0 (2)

with u : R+ × R2 → R, a : R+ × R2 → R2 the direction.

semi-Lagrangian method

Transport equation and interpolation problem

equation describing the displacement of some quantity

∂tu + a(x) · ∇xu = 0 (2)

with u : R+ × R2 → R, a : R+ × R2 → R2 the direction.

semi-Lagrangian method

Semi-Lagrangian method
characteristic curve Xs, y : R+ → R2

{
X ′(t) = a(t, X (t)),
X (s) = y .

the solution u can be computed as

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj (tn)).

Xtn+1,xj (tn) ∈ R2 is not necessarily a node of the mesh

u(tn, Xtn+1,xj (tn)) ' (Πun)
(
Xtn+1,xj (tn)

)
,

Π an interpolation operator

Figure: Example of mesh on which we will apply the interpolation
operator Π.

Semi-Lagrangian method
characteristic curve Xs, y : R+ → R2{

X ′(t) = a(t, X (t)),
X (s) = y .

the solution u can be computed as

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj (tn)).

Xtn+1,xj (tn) ∈ R2 is not necessarily a node of the mesh

u(tn, Xtn+1,xj (tn)) ' (Πun)
(
Xtn+1,xj (tn)

)
,

Π an interpolation operator

Figure: Example of mesh on which we will apply the interpolation
operator Π.

Semi-Lagrangian method
characteristic curve Xs, y : R+ → R2{

X ′(t) = a(t, X (t)),
X (s) = y .

the solution u can be computed as

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj (tn)).

Xtn+1,xj (tn) ∈ R2 is not necessarily a node of the mesh

u(tn, Xtn+1,xj (tn)) ' (Πun)
(
Xtn+1,xj (tn)

)
,

Π an interpolation operator

Figure: Example of mesh on which we will apply the interpolation
operator Π.

Semi-Lagrangian method
characteristic curve Xs, y : R+ → R2{

X ′(t) = a(t, X (t)),
X (s) = y .

the solution u can be computed as

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj (tn)).

Xtn+1,xj (tn) ∈ R2 is not necessarily a node of the mesh

u(tn, Xtn+1,xj (tn)) ' (Πun)
(
Xtn+1,xj (tn)

)
,

Π an interpolation operator

Figure: Example of mesh on which we will apply the interpolation
operator Π.

Semi-Lagrangian method
characteristic curve Xs, y : R+ → R2{

X ′(t) = a(t, X (t)),
X (s) = y .

the solution u can be computed as

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj (tn)).

Xtn+1,xj (tn) ∈ R2 is not necessarily a node of the mesh

u(tn, Xtn+1,xj (tn)) ' (Πun)
(
Xtn+1,xj (tn)

)
,

Π an interpolation operator

Figure: Example of mesh on which we will apply the interpolation
operator Π.

Semi-Lagrangian method
characteristic curve Xs, y : R+ → R2{

X ′(t) = a(t, X (t)),
X (s) = y .

the solution u can be computed as

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj (tn)).

Xtn+1,xj (tn) ∈ R2 is not necessarily a node of the mesh

u(tn, Xtn+1,xj (tn)) ' (Πun)
(
Xtn+1,xj (tn)

)
,

Π an interpolation operator

Figure: Example of mesh on which we will apply the interpolation
operator Π.

Interpolation problem

constant direction a⇒ Xs,y (t) = y + (t − s)a, and:

un+1
j = (Πun) (xj − a∆t) .

operator Π: same model than for border detection

Figure: Input (left) and expected output (right).

Interpolation problem

constant direction a⇒ Xs,y (t) = y + (t − s)a, and:

un+1
j = (Πun) (xj − a∆t) .

operator Π: same model than for border detection

Figure: Input (left) and expected output (right).

Interpolation problem

constant direction a⇒ Xs,y (t) = y + (t − s)a, and:

un+1
j = (Πun) (xj − a∆t) .

operator Π: same model than for border detection

Figure: Input (left) and expected output (right).

Results

Figure: Solutions computed using the U-Net interpolation model.

Results

Figure: Solutions computed using the U-Net interpolation model.

Conclusion

U-Net architecture is efficient

⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Conclusion

U-Net architecture is efficient
⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process

Tools used

totality of this project is coded in Python

I Tensorflow/Keras (model training)

I Spektral (convolutional layers)

I Github

I PyGMSH (generate meshes)

v100 GPU for training sessions

Tools used

totality of this project is coded in Python

I Tensorflow/Keras (model training)

I Spektral (convolutional layers)

I Github

I PyGMSH (generate meshes)

v100 GPU for training sessions

Tools used

totality of this project is coded in Python

I Tensorflow/Keras (model training)

I Spektral (convolutional layers)

I Github

I PyGMSH (generate meshes)

v100 GPU for training sessions

	Definitions
	Frontier detection problem
	Burgers' equation and dynamic refining
	Transport equation and interpolation problem

