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Introduction

continuation of the previous project

GCNs achieve good results even after modifications of the graph

develop a new model and use it in two problems:

I discontinuities detection and Burgers’ equation

I interpolation problem and linear transport equation
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I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes
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I each graph node gathers features from its neighbors



Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors



Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors



Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors



Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors



Definitions: Graph Convolutional Networks

GCN: sequence of layers put one after the other

graph convolutional layer:

I takes d dimensional node features as input

I computes d ′ dimensional representations of the nodes

I uses recursive neighborhood diffusion and message passing

I each graph node gathers features from its neighbors



Definitions: pooling layers
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new layers reducing the graph resolutions

enlarge receptive field for better performance and generalization
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Definitions: Top-k pooling

inputs: mesh Ω, nodes features X , integer k ,
output: new mesh with k nodes

selects subset of nodes to form a smaller graph

a score yi ∈ R is associated to each node ni of Ω

yi = Xi · p/‖p‖

p trainable vector

the new mesh has the k nodes with the highest score
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Top-k pooling example

Xi = node position, p = (1, 1)

Figure: Initial mesh (left) and pooled mesh (right).
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pooling based on the k-Means clustering algorithm

inputs: mesh Ω, integer k , output: new mesh with k nodes

I compute k clusters of the nodes of Ω

I center of the k clusters → nodes of the new mesh

I new node features = average of the node features in the
clusters
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k-Means example

Figure: Initial mesh (left), clusters (center), and pooled mesh (right).



Frontier detection problem



Frontier detection: dataset
problem: detect the frontier between to areas on a mesh

3 types of areas:

Figure: Trivial dataset (left), semi-trivial dataset (center) and islands
dataset (right).
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worked only on the trivial dataset

Figure: Old model results on the islands dataset.
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3 pooling layers and 3 unpooling layers
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Frontier detection: results

first model: U-Net with Vanilla GCN layers and Top-k pooling
layers

⇒ bad results: Top-k pooling discard big portions of the graph

second model: replace Top-k pooling by k-Means pooling
⇒ good results on trivial/semi-trivial dataset

Figure: Input (left), model prediction (middle), expected output (right).
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second model still unable to detect the border on the islands
dataset

third model: replace VanillaGCN with ChebConv layers
⇒ model more complex/more trainable weights
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Burgers’ equation and dynamic refining

PDE used for example in fluid mechanics or traffic flow

∂tρ(t, x) +∇ ·
(
a
ρ(t, x)2

2

)
= 0 (1)

with ρ : R+ × R2 → R, a ∈ R2 and t ∈ [0, T ].

multiple methods: kinetic relaxation or finite volume method

transforms PDE into algebraic equations
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Finite Volume Method
mesh Ω, triangles Ωj , tn discretization of [0, T ]

final scheme:

ρn+1
j = ρnj −

∆t

|Ωj |
∑
k∈Ej

djkF (ρnj , ρ
n
k).

where:

F (ρnj , ρ
n
k) =

1

2

[
a · njk

(
ρnj

2 + ρnj
2
)

+ max
(
|a · njkρnj |, |a · njkρnk |

)
(ρnj − ρnk)

]

Figure: Notations.
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Example of solutions

Figure: Initial solution (left) and final solution (right) at t = 0.05s,
a = (1, 0).
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Dynamic refining
refine the mesh while we are computing the final solution

use the border detection model to detect discontinuities

Figure: Final Burgers’ solutions (left), and model predictions (right).
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Dynamic refining

Figure: Final Burgers’ solutions (left), and model predictions (right).



Results

Figure: Solution with refinements (left), and model prediction (right).



Results

Figure: Finer solution (left), and model prediction (right).



Results

Figure: Projections and errors on the finer mesh.
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Transport equation and interpolation problem

equation describing the displacement of some quantity

∂tu + a(x) · ∇xu = 0 (2)

with u : R+ × R2 → R, a : R+ × R2 → R2 the direction.

semi-Lagrangian method
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Semi-Lagrangian method
characteristic curve Xs, y : R+ → R2

{
X ′(t) = a(t, X (t)),
X (s) = y .

the solution u can be computed as

un+1
j = u(tn+1, xj) = u(tn, Xtn+1,xj (tn)).

Xtn+1,xj (tn) ∈ R2 is not necessarily a node of the mesh

u(tn, Xtn+1,xj (tn)) ' (Πun)
(
Xtn+1,xj (tn)

)
,

Π an interpolation operator

Figure: Example of mesh on which we will apply the interpolation
operator Π.
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Interpolation problem

constant direction a⇒ Xs,y (t) = y + (t − s)a, and:

un+1
j = (Πun) (xj − a∆t) .

operator Π: same model than for border detection

Figure: Input (left) and expected output (right).
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Results

Figure: Solutions computed using the U-Net interpolation model.
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Conclusion

U-Net architecture is efficient

⇒ allowed us to solve the frontier problem

good results on Burgers’ equation but:

I limitation on number of refinements

I use a solving method without time constraints

we made an interpolation operator, but instable

possible corrections:

I modify the training dataset

I modify the training process
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totality of this project is coded in Python

I Tensorflow/Keras (model training)

I Spektral (convolutional layers)

I Github

I PyGMSH (generate meshes)

v100 GPU for training sessions



Tools used

totality of this project is coded in Python

I Tensorflow/Keras (model training)

I Spektral (convolutional layers)

I Github

I PyGMSH (generate meshes)

v100 GPU for training sessions



Tools used

totality of this project is coded in Python

I Tensorflow/Keras (model training)

I Spektral (convolutional layers)

I Github

I PyGMSH (generate meshes)

v100 GPU for training sessions


	Definitions
	Frontier detection problem
	Burgers' equation and dynamic refining
	Transport equation and interpolation problem

