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1 Introduction

Elasticity is the property of a material to change its shape during the application
of a force (external and/or internal), and to regain its original shape afterwards.

While the industrial applications of elasticity (most notably elasticity in con-
struction and engineering materials) are numerous, we’re more interested in the
medical applications.

2 Passive Elasticity

Passive elasticity is the study of the deformation of a material under exclusively
external forces. If a body Ω ⊂ Rd of density ρ is subjected to an external body
force f , the equations of passive elasticity on Ω in terms of the displacement η
are given by:

ρ
∂2η

∂t2
−∇ · (FΣ) = f in Ω ,

η = gD on ΓD ,

FΣn = gN on ΓN ,

(1)

where F = I+∇η is the deformation gradient, I the identity matrix of Rd, and
Σ is the second Piola-Kirchoff stress tensor which describes the passive elastic
behavior of the structure. In the Saint Venant–Kirchhoff model, the second
Piola-Kirchoff stress tensor is

Σ = λtr (E) I + 2µE, E =
1

2

(
∇η +∇ηT +∇ηT∇η

)
, (2)

where λ and µ are the Lamé coefficients

λ =
Eν

(1− ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

expressed in terms of Young’s modulus E and Poisson’s ratio ν which represent
respectively the stiffness of the medium and its compressibility.

3 Active Elasticity

Active elasticity is the study of the deformation of a material under both internal
and external forces.

3.1 Active-Stress

The active-stress point of view assumes that the internal at any given point
during the displacement, elastic deformations are made in a single direction,
called active fiber direction. This model is very well suited to simulate active

2



elasticity on a body that, at the macroscopic scale (when we average the micro-
scopic active components), exhibits a fiber-like structure.
The active fiber direction is denoted by ea(x, t), but in none of the examples we
study will ea(x, t) depend on time or position, and so we’ll denote it by ea.

We introduce an active stress tensor Σ∗, defined by

Σ∗ = Σaea ⊗ ea,

where Σa is a scalar function describing the stretching-elongating behavior of
the active fibers which also depends on the time and the material position, and
⊗ denotes the tensor product.
The active-stress point of view then consists in modifying the passive elasticity
equations (1) by changing the second Piola-Kirchoff stress tensor Σ in Σ−Σ∗:

ρ
∂2η

∂t2
−∇ · (F (Σ− Σ∗)) = f in Ω ,

η = gD on ΓD ,

(FΣ− FΣ∗)n = gN on ΓN .

(3)

We implemented a Finite Element Method in Feel++ using the Computa-
tional Solid Mechanics Toolbox to solve the active stress problem. Using the
algebraic factory tools and following the Newton linearization process, we de-
composed the non-linear terms using a Taylor development in the variational
formulation in a linear part, a jacobian-dependent part and a residual part.

The implemented code can be found in solid_active_additive.cpp.

Here are some of the results we obtained in modeling the movements of a 2D
pulmonary cilium, using the active stress FEM.
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(a) t = 0.01 (b) t = 0.03

(c) t = 0.02

Figure 1: Numerical simulation for flapping cilia with at unit scale

(a) t = 0.075 (b) t = 0.1

(c) t = 0.125 (d) t = 0.180

Figure 2: Numerical simulation for flapping cilia with varying amplitude
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3.2 Active-Strain

We started by constructing a mesh that we could use our active-strain elasticity
model on, based on the work by Curatolo and Teresi in [1]. The idea was to
have a material with several layers, each having different Young moduli; and
that would mimic the flapping of a fish.

We began by focusing on the several layers part, with an approximation of
a fish built as follows:

• Five 1× 10 rectangular layers stacked vertically in a rectangle

• The outer layers have the same Young modulus

• The first inner layers have the same Young modulus, higher than the outer
layer’s

• The innermost layer has the highest Young modulus

Figure 3: Sandwich-like approximation

The gmsh file of this mesh can be found in the sandwich folder, along with
json and cfg files to use with the Feel++ toolbox plugin feelpp_p_multiplicative.

We then built a better approximation of a fish:
We denote by L the fish length and h it’s width, the two extreme horizontal

points coordinates are given by (0, 0) and (L, 0).
Using the polynomial coefficients given in [1], we can get the Y-coordinates (de-
pendent on h) of the border points for X = 0.25L, X = 0.5L and X = 0.75L.
We use more interpolation points for the head so that it more closely resembles a
fish’s (X = 0.85L, X = 0.9L and X = 0.95L), and use the spline functionality
of gmsh to get an interpolation curve of the points we built.
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Figure 4: Fish mesh

Figure 5: Fish outline

We then implemented a program to solve the FEM associated with the
active-strain problem, using only the Feel++ library at first. The code doesn’t
work properly on our fish model: at certain time steps, the linear solver fails to
converge. We did get some interesting results nonetheless:

Eventually, we tried to adapt this code using the CSM Toolbox, but unfor-
tunately we didn’t manage to make it work.
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