
University of Strasbourg

Master 1 CSMI

Implementation and comparison of
cardiovascular models

Colin Holler Supervisor : M. Prud’homme Christophe

Academic year 2020-2021

Contents

1 Introduction. 1

1.1 General context. 1
1.2 Company presentation. 1
1.3 Subjects explanation. 2
1.4 Project management. 2

2 Pulse 2

2.1 Pulse Physiology Engine framework. 2
2.2 First steps with Pulse. 3
2.3 Parameters description. 6
2.4 Using Pulse. 7

2.4.1 How to con�gure an exercise scenario. 7
2.4.2 How to execute a scenario. 7

2.5 How does the cardiovascular system work? . 8
2.6 Cardiovascular modeling . 9
2.7 The Cardiovascular Circuit . 16

3 Another approach : Bio�uid modelling of the coupled eye-brain system. 18

3.1 Context . 18
3.2 The model. 18

1 Introduction.

1.1 General context.

This internship is part of the �rst year of the CSMI master’s degree. From June 1 to July 31, I did my
internship at the maths laboratory of the University of Strasbourg in teleworking. This internship was an
opportunity for me to broaden my knowledge on subjects such as the cardiovascular �eld. This internship
also allowed me to understand di�erent existing models. The topic I worked on was a direct continuation
of the group project done in the �rst year. In this report we will �nd several parts of the project report.

1.2 Company presentation.

This internship is a direct continuation of the project with Groupama FDJ, so a presentation of this
company is necessary. At the beginning of the 1997 season, thanks to the passion of Marc and Yvon
Madiot, the cycling team "Française des Jeux" was born. 2018 marks a turning point in the team’s history,
with the arrival of Groupama, the new title partner. The association of these two major players in French
sport gives birth to the Groupama-FDJ Cycling Team [8].

Figure 1: Groupama-FDJ logo (Source : Groupama-FDJ Equipe Cycliste [8])

The current team leaders are Thibault Pinot (climber) and Arnaud Démarre (sprinter). In 24 years, the
team has won more than 500 victories, including 11 French Champion jerseys, 3 cycling Monuments and
44 stages of the Grand Tours. The team is part of the UCI WorldTour and therefore among the 19 best
teams in the world. In particular, in 2020 it was the 9th world team and the 1st French team. Moreover,
recently David Gaudu, a climber from Groupama-FDJ, won the sixth and last stage of the Tour of the
Basque Country.

1

1.3 Subjects explanation.

The idea of the internship is to understand in particular a speci�c system proposed by the Pulse Physi-
ology Engine platform. Indeed, in our project, we are interested in several models such as the nutrition,
environment and cardiovascular model. In our case, we will deepen our research on the cardiovascular
model. We will go into the implementation of this model and understand what is called the Data Flow.
Then we are interested in another model, that of the brain-eye coupling, which can be similar to the one
of Pulse.

1.4 Project management.

I mainly worked on my own by searching the website associated with Pulse Physiology Engine as well
as reading the articles given by my supervisor Mr. Christophe Prud’homme who is a teacher-researcher at
the University of Strasbourg. I also contacted my project mates Melissa and Jimmy for some help on how
to use Pulse.

2 Pulse

2.1 Pulse Physiology Engine framework.

The Pulse Physiology Engine is a C++ based, comprehensive human physiology simulator that drives
medical education, research, and training technologies. The engine enables accurate and consistent phys-
iology simulation across the medical community.

Figure 2: Pulse Physiology Engine logo (Source : Pulse [1])

The engine is a body physiology model that combines physics-based parameter models and con-
trol system mechanisms to model real-time system level physiologic behaviors. Parameter models use
electrical circuit analogs to represent the major physiologic systems. Closed loop circuits can be de�ned
easily within the Common Data Model [2]. It is a speci�cation of all data and relationships associated
with the software [2]. It provides a data exchange format between models of physiological engine, but
also between any application and physiological engine. Since the language is common to all, this makes
it easier to implement new models in the application. Closed loop circuits fully dynamic, and can be ma-
nipulated and modi�ed at each time step. The solver can be used to analyze electrical, �uid, and thermal
circuits using a unit in the international system. The solver outputs were validated using the outputs from
an existing known third party circuit solver. All results matched the validation data, con�rming this is a
sound approach for the engine. Here with the environment system below, the Ambient node contains both
thermal properties (temperature), �uid properties (pressure), and substance properties (volume fraction,
aerosol concentration). It is assigned as the Respiratory and Anesthesia Machine circuit’s reference node,
and therefore, interacts with them directly. Any changes to the Ambient node properties automatically
propagates through the other systems. We will see later an example of an electrical circuit.

Pulse has been developed through a combination of funding by many government and private entities,
and is a signi�cantly improved and extended fork from the DoD-funded BioGears program. The Pulse

2

repository is maintained by the Kitware team that includes the original core BioGears creators. Pulse
has recently been incorporated into a number of commercials, research, and academic tools for medical
simulation. Moreover, models and results are validated using a combination of peer-reviewed publications
and subject expertise.

2.2 First steps with Pulse.

The engine is driven by a set of instructions written in a scenario �le. The structure of a scenario must
respect the Common Data Model.
The scenario is stored in a JSON �le and contains the following execution information ’":

• Patient File and optional conditions.

• A list of values to return from the engine.

• A list of actions to execute, for example a cardiac arrest during the simulation.

As described in Listing 1, the JSON �le starts with a name and description, but this is not used in execution.
1 {
2 "Name": "Vitals Monitor",
3 "Description": "Data associated with a vitals monitor.",
4 ...

Listing 1: Begin of VitalsMonitor.json.

Then, it is necessary to specify which �le is used to initialize the patient’s data. At the time of the sim-
ulation, this data is checked to ensure that the patient is stable before any action is taken. Below, the
ExerciseEnvironment.json �le initializes the data from the patient’s environment.

1 ...
2 "PatientConfiguration": {
3 "PatientFile": "StandardMale.json",
4 "Conditions": { "AnyCondition": [{
5 "EnvironmentCondition": {
6 "InitialEnvironmentalConditions": {
7 "EnvironmentalConditionsFile": "./environments/ExerciseEnvironment.json"
8 }
9 }

10 },{
11 "PatientCondition" : {
12 "ConsumeMeal": { "Meal": { "Nutrition": {
13 "Carbohydrate": {
14 "ScalarMass": { "Value": 200.0, "Unit": "g" }
15 },
16 "CarbohydrateDigestionRate": {
17 "ScalarMassPerTime": { "Value": 1.083, "Unit": "g/min" }
18 },
19 "Fat": {
20 "ScalarMass": { "Value": 20.0, "Unit": "g" }
21 },
22 "FatDigestionRate": {
23 "ScalarMassPerTime": { "Value": 0.055, "Unit": "g/min" }
24 },
25 "Protein": {
26 "ScalarMass": { "Value": 30.0, "Unit": "g" }
27 },
28 "ProteinDigestionRate": {
29 "ScalarMassPerTime": { "Value": 0.071, "Unit": "g/min" }
30 },
31 "Calcium": {

3

32 "ScalarMass": { "Value": 521, "Unit": "mg" }
33 },
34 "Sodium": {
35 "ScalarMass": { "Value": 1604, "Unit": "mg" }
36 },
37 "Water": {
38 "ScalarVolume": { "Value": 1.0, "Unit": "L"}
39 }},
40 "ElapsedTime": { "ScalarTime": { "Value": 2.0, "Unit": "hr"}}}}}}
41]}},
42 ...

Listing 2: Con�guration of initial data.

Listing 3 describes Data Requests that correspond to the output data after simulation, stored in a CSV �le.
Currently, there are four supported types of data requests : Physiology System Data, Environment Data,
Substance Data, Equipment Data and Compartment Data. For each data, we have to choose the precision
of the rounded values and give the unit of measurement.

1 ...
2 "DataRequestManager": {
3 "DataRequest": [
4 {
5 "DecimalFormat":{"Precision":2}, "Category":"Physiology",
6 "PropertyName":"HeartRate", "Unit":"1/min"
7 },
8 {
9 "DecimalFormat":{"Precision":3}, "Category":"Physiology",

10 "PropertyName":"OxygenSaturation", "Unit":"unitless"
11 },
12 {
13 "DecimalFormat":{"Precision":1}, "Category":"Physiology",
14 "PropertyName":"SkinTemperature", "Unit":"degC"
15 },
16]},
17 ...

Listing 3: Data requests for outputs.

Then, conditions give instructions to the engine to apply certain changes to the engine to simulate the
speci�ed conditions. We can change the environment completely by including a �le that stores this data,
or we can change all environment settings manually, as in Listing 4. To change the amount of nutrients
consumed, you can also change all parameters, as in the example.

1 ...
2 "AnyAction": [{
3 "AdvanceTime": {
4 "Time": {
5 "ScalarTime": {
6 "Value": 50.0,
7 "Unit": "s"
8 }
9 }

10 }
11 },
12 { "EnvironmentAction": {
13 "ChangeEnvironmentalConditions": {
14 "EnvironmentalConditionsFile": "./environments/Hypobaric4000m.json"
15 }
16 }
17 },
18 { "PatientAction": {
19 "ConsumeNutrients": {

4

20 "Nutrition": {
21 "Carbohydrate": {
22 "ScalarMass": { "Value":415.0, "Unit":"g" }
23 },
24 "CarbohydrateDigestionRate": {
25 "ScalarMassPerTime": { "Value":0.5, "Unit":"g/min" }
26 },
27 "Fat": {
28 "ScalarMass": { "Value":83.0, "Unit":"g" }
29 },
30 "FatDigestionRate": {
31 "ScalarMassPerTime": { "Value":0.055, "Unit":"g/min" }
32 },
33 "Protein": {
34 "ScalarMass": { "Value":99.6, "Unit":"g"}
35 },
36 "ProteinDigestionRate": {
37 "ScalarMassPerTime": { "Value":0.071, "Unit":"g/min" }
38 },
39 "Calcium": {
40 "ScalarMass": { "Value":1.0, "Unit":"g"}
41 },
42 "Sodium": {
43 "ScalarMass": { "Value":1.5, "Unit":"g"}
44 },
45 "Water": {
46 "ScalarVolume": { "Value":3.7, "Unit":"L"}
47 }
48 }
49 }
50 }
51 }
52]

Listing 4: Patient actions and environment actions.

In our project we used the exercise action which consists of increase the patient’s metabolic rate leading to
an increase in core temperature, cardiac output, respiration rate and tidal volume. This will therefore allow
us to model an e�ort of a cyclist. But in our case, we have several actions available to the cardiovascular
system :

• Cardiac Arrest : The cardiac arrest event is a cessation of all cardiac and respiratory function. The
cardiac arrest event can be triggered by systems of the engine when physiological thresholds are
reached.

• Hemorrhage : Hemorrhage is a signi�cant reduction in blood volume, which triggers a physio-
logical response to stabilize cardiovascular function. Hemorrhage causes a reduction in the �lling
pressure of the circulation, resulting in a decrease in venous return. This is evidenced by a decrease
in mean arterial pressure and cardiac output.

• Pericardial E�usion : The pericardial e�usion action is used to model acute pericardial e�usion by
adding a �ow source on the pericardium. This action leads to a volume accumulation over the course
of the simulation. The accumulated volume is used to calculate a pressure source that is applied to
the left and right heart.

• Cardiopulmonary Resuscitation : Chest compressions are simulated in the engine by adjusting
the value of the pressure source that is connected between the common equipotential node and the
capacitors that represent the right and left cardiac compliance. The pressure source represents the
intrathoracic pressure, thus a positive pressure value represents an increase in intrathoracic pressure.
The pressure on the source is calculated from the input force and the biometrics of the patient.

5

• Exacerbations : The pulmonary shunt condition has an exacerbation actions de�ned to allow for
increased/decreased severities during runtime. This exacerbation action will instantaneously (i.e.,
during the simulation/scenario runtime) change the value of the pulmonary shunt (right, left, or
both), based on the severity provided. Exacerbations can either degrade or improve the patient’s
current condition.

• Hemorrhage Cessation : A “tourniquet” may be applied to a bleeding distal portion of the body
to reduce blood �ow entering that portion and e�ectively stopping the bleeding. With the bleed-
ing managed, vital signs should return to their normal state after a su�cient period of time. A
“tourniquet” may be simulated in the engine by reducing the bleeding rate associated with a speci-
�ed hemorrhage

2.3 Parameters description.

We have several parameters available to set up a patient. In our case, we will just present the descriptions
of the patient �le, the others like environment �le and nutrition �le are not interesting for us. In
particular, the patient �le contains all the parameters that describe his state of health.

1 {
2 "Name": "StandardMale",
3 "Age": {
4 "ScalarTime": {
5 "Value": 44.0,
6 "Unit": "yr"
7 }
8 },
9 "Weight": {

10 "ScalarMass": {
11 "Value": 170.0,
12 "Unit": "lb"
13 }
14 },
15 "Height": {
16 "ScalarLength": {
17 "Value": 71.0,
18 "Unit": "in"
19 }
20 },
21 "BodyFatFraction": {
22 "Scalar0To1": {
23 "Value": 0.21
24 }
25 },
26 "DiastolicArterialPressureBaseline": {
27 "ScalarPressure": {
28 "Value": 73.5,
29 "Unit": "mmHg"
30 }
31 },
32 "SystolicArterialPressureBaseline": {
33 "ScalarPressure": {
34 "Value": 114.0,
35 "Unit": "mmHg"
36 }
37 }
38 }

Listing 5: Initial Patient data

6

In Listing 5, we describe how to implement this data.

Age : Age of the cyclist in years.

Weight : Weight of the cyclist in pound-mass, lb.

Height : Height of the cyclist in inches, in.

BodyFatFraction : Number between 0 and 1 associated with body fat.

DiastolicArterialPressureBaseline : Blood pressure is traditionally measured using auscultation with a
mercury-tube sphygmomanometer. The diastolic blood pressure is the minimum pressure experienced
in the aorta when the heart is relaxing before ejecting blood into the aorta from the left ventricle, the unit
is mmHg and generally the value is approximated at 80 mmHg.

HeartRateBaseline : Heart rate is the speed of the heartbeat measured by the number of contractions
(beats) of the heart per minute. The unit is in Hertz i.e. 1/min.

RespirationRateBaseline : The respiratory rate is the rate at which breathing occurs. The unit is also
in Hertz i.e. 1/min.

SystolicArterialPressureBaseline : Systolic pressure refers to the maximum pressure within the large ar-
teries when the heart muscle contracts to propel blood through the body, the unit is therefore mmHg.

2.4 Using Pulse.

2.4.1 How to con�gure an exercise scenario.

Before we could use our data on Pulse, we can give actions over time to the patient, for example here
a bleed. The other actions presented above are done in a similar way. For this, we have to change the
AnyAction part of VitalsMonitor.json by adding the �elds described in Listing 6.

1 "AnyAction": [{
2 "PatientAction": {
3 "Hemorrhage": {
4 "Compartment":"RightLeg", // Right or Left
5 "Type":"External",
6 "Rate": { "ScalarVolumePerTime": { "Value":250.0, "Unit":"mL/min" } } // patient

can endure a loss of 250mL/min
7 }
8 }
9 }]

Listing 6: Put a Hemorrhage in a scenario �le

2.4.2 How to execute a scenario.

After implementing the desired scenario in a JSON �le, it must be stored in the folder /install/bin/, which
is the location of the PulseScenarioDriver executable. The scenario can then be executed using the Linux
command described in Listing 7.

1 ./PulseScenarioDriver VitalsMonitor.json

Listing 7: Execution command

7

The software then checks that the initialized patient is stable before starting the simulation. After con�r-
mation of the stable state, the simulation displays in real time in the terminal what is happening.

1 ...
2 [INFO] : [0(s)] Executing Scenario
3 [INFO] : [0(s)] [Action]
4 Advance Time : 50(s)
5 [INFO] : [50.02(s)] [Action] 50.02(s), Environment Action : Change Environmental

Conditions
6 Environmental Conditions File: ./environments/Hypobaric4000m.json
7 [INFO] : [50.02(s)] [Action] 50.02(s), Patient Action : Consume Nutrients
8 Charbohydrates: 415(g)
9 Charbohydrates Digestion Rate: 0.5(g/min)

10 Fat: 83(g)
11 Fat Digestion Rate: 0.055(g/min)
12 Protein: 99.6(g)
13 Protein Digestion Rate: 0.071(g/min)
14 Calcium: 1(g)
15 Sodium: 1.5(g)
16 Water: 3.7(L)
17 [INFO] : [50.02(s)] [Action]
18 Advance Time : 60(min)
19 ...
20 [INFO] : [60.74(s)] [Event] 60.74(s), Patient has Hypoxia
21 ...
22 [INFO] : [3650.04(s)] It took 486.788s to run this simulation

Listing 8: Display on the terminal during execution

The selected output data are stored in a CSV �le generated by the simulation. The name of �le is like the
scenario �le by adding “Results”. For example, the results presented in Listing 9 are stored in VitalsMoni-
torResults.csv.

1 Time(s),HeartRate(1/min),OxygenSaturation,SkinTemperature(degC)
2 ...
3 55.60,75.00,0.966,32.7
4 55.62,75.00,0.966,32.7
5 55.64,76.92,0.966,32.7
6 55.66,76.92,0.965,32.7
7 55.68,76.92,0.965,32.7
8 ...

Listing 9: Results in CSV �le

2.5 How does the cardiovascular system work?

The cardiovascular system is a large organ system comprised of the heart and the blood vessels. It serves as
the body’s primary transport and distribution system. The cardiovascular system is sometimes described
as two separate circulations: the systemic circulation and the pulmonary circulation, which are connected.
In the systemic circulation, oxygenated blood leaves the left side of the heart, travels through arteries and
into the capillaries, and then returns as deoxygenated blood through the veins to the right side of the heart.
From the right side of the heart, the deoxygenated blood travels to the pulmonary circulation through the
pulmonary arteries, is re-oxygenated in the pulmonary capillaries, and then returns to the left side of the
heart through the pulmonary veins. [?]

8

Figure 3: Diagram representing the cardiovascular system (Source :[?])

Whether the cardiovascular circulation is thought of as one closed circuit with a single dual-purpose pump
or two interconnected circuits with separate synchronous pumps, the key combination of systemic and
pulmonary vasculature serves as a distribution and exchange network, providing vital oxygen to the tissues
and removing toxic carbon dioxide while distributing nutrients and other substances necessary for healthy
physiologic function.

2.6 Cardiovascular modeling

The state of the cardiovascular system is determined at each time step by a three-step process: Prepro-
cessing, Processing and Postprocessing. In the Preprocessing step, feedback from other systems, as well
as internal system feedback, is processed to determine the system state. The Process step uses an already
implemented function to calculate the new system state. The Post-processing step is used to prepare the
system for the time advance. [5]

First, we have to initialize a patient with parameter values. So we have the initialization as well as the
stabilization. The patient-speci�c homeostatic state of the cardiovascular circuit is computed. Next, all
system parameters are initialized. The Cardiovascular System is then initialized to the resting state. Con-

9

ditions are then applied by modifying system and patient parameters and restabilizing the engine. The
available conditions in the cardiovascular system are anemia, heart failure, pericardial e�usion, and pul-
monary shunt.

• Pre-processing : Cardiac cycle calculations include methodology for updating the driving force
(heart contraction and relaxation) of the cardiovascular system throughout the duration of a cardio-
vascular cycle (a single heart beat). This includes a set of systolic calculations that updates contrac-
tility at the beginning of the cycle to represent a heart contraction. For this we need the implemented
function HeartDriver : [16]

1 void Cardiovascular::HeartDriver()
2 {
3 // Reset start cardiac cycle event if it was activated by BeginCardiacCycle() last

time step
4 if (m_data.GetEvents().IsEventActive(eEvent::StartOfCardiacCycle))
5 m_data.GetEvents().SetEvent(eEvent::StartOfCardiacCycle, false, m_data.

GetSimulationTime());
6

7 // m_StartSystole is set to true at the end of a cardiac cycle in order to setup
the next cardiac cycle.

8 // After the next cycle is prepared in BeginCardiacCycle, m_StartSystole is seet
back to false.

9 if (m_StartSystole)
10 BeginCardiacCycle(); // we see it later.
11

12 if (!m_data.GetEvents().IsEventActive(eEvent::CardiacArrest))
13 {
14 if (m_CurrentCardiacCycleTime_s >= m_CardiacCyclePeriod_s - m_data.GetTimeStep_s

())
15 m_StartSystole = true; // A new cardiac cycle will begin next time step.
16

17 AdjustVascularTone();
18 CalculateHeartElastance();
19 }
20 // Compliance refers to the ability of an organ to adapt its volume to a pressure.
21 m_pRightHeart->GetNextCompliance().SetValue(1.0 /

m_RightHeartElastance_mmHg_Per_mL, VolumePerPressureUnit::mL_Per_mmHg);
22 m_pLeftHeart->GetNextCompliance().SetValue(1.0 / m_LeftHeartElastance_mmHg_Per_mL,

VolumePerPressureUnit::mL_Per_mmHg);
23

24 // Now that the math is done we can increment the cardiac cycle time
25 // Note that the cardiac cycle time (m_CurrentCardiacCycleTime_s) continues to

increment until a cardiac cycle begins (a beat happens)
26 // So for a normal sinus rhythm, the maximum cardiac cycle time is equal to the

cardiac cycle period (m_CardiacCyclePeriod_s).
27 // For any ineffective rhythm (no heart beat) the cardiac cycle time will be as

long as it has been since the last time there was an effective beat.
28 m_CurrentCardiacCycleTime_s += m_data.GetTimeStep_s();
29 }

Listing 10: The method HeartDriver(). Source : [16]

This function tracks the progress of the current cardiac cycle, and modi�es the compliance of the
left and right heart to drive the cardiovascular circuit. The reduced compliance at the beginning of
the cycle acts to increase the pressure, driving �ow out of the heart. The compliance is then reduced,
allowing �ow into the heart. This represents the systolic and diastolic portion of the cardiac cycle.
The compliance is driven by an elastance equation. This function also keeps track of the cardiac
cycle time and calls BeginCardiacCycle() at the start of systole portion of each cycle.

1 void Cardiovascular::BeginCardiacCycle()
2 {

10

3 m_data.GetEvents().SetEvent(eEvent::StartOfCardiacCycle, true, m_data.
GetSimulationTime());

4

5 // Changes to the heart rate and other hemodynamic parameters are applied at the
top of the cardiac cycle.

6 // Parameters cannot change during the cardiac cycle because the heart beat is
modeled as a changing compliance.

7

8 double HeartDriverFrequency_Per_Min = m_data.GetCurrentPatient().
GetHeartRateBaseline(FrequencyUnit::Per_min);

9 m_LeftHeartElastanceMax_mmHg_Per_mL = m_data.GetConfiguration().
GetLeftHeartElastanceMaximum(PressurePerVolumeUnit::mmHg_Per_mL);

10 m_RightHeartElastanceMax_mmHg_Per_mL = m_data.GetConfiguration().
GetRightHeartElastanceMaximum(PressurePerVolumeUnit::mmHg_Per_mL);

11

12 // Apply baroreceptor reflex effects
13 /// \todo need to reset the heart elastance min and max at the end of each

stabiliation period in AtSteadyState()
14 if (m_data.GetNervous().GetBaroreceptorFeedback() == eSwitch::On)
15 {
16 m_LeftHeartElastanceMax_mmHg_Per_mL *= m_data.GetNervous().

GetBaroreceptorHeartElastanceScale().GetValue();
17 m_RightHeartElastanceMax_mmHg_Per_mL *= m_data.GetNervous().

GetBaroreceptorHeartElastanceScale().GetValue();
18 HeartDriverFrequency_Per_Min *= m_data.GetNervous().

GetBaroreceptorHeartRateScale().GetValue();
19 }
20 if (m_data.GetNervous().GetChemoreceptorFeedback() == eSwitch::On)
21 {
22 // Chemoreceptor and drug effects are deltas rather than multipliers, so they

are added.
23 HeartDriverFrequency_Per_Min += m_data.GetNervous().

GetChemoreceptorHeartRateScale().GetValue();
24 }
25

26 // Apply drug effects
27 if (m_data.GetDrugs().HasHeartRateChange())
28 HeartDriverFrequency_Per_Min += m_data.GetDrugs().GetHeartRateChange(

FrequencyUnit::Per_min);
29 BLIM(HeartDriverFrequency_Per_Min, m_data.GetCurrentPatient().GetHeartRateMinimum(

FrequencyUnit::Per_min), m_data.GetCurrentPatient().GetHeartRateMaximum(
FrequencyUnit::Per_min));

30

31 //Apply heart failure effects
32 m_LeftHeartElastanceMax_mmHg_Per_mL *= m_LeftHeartElastanceModifier;
33

34 // Now set the cardiac cycle period and the cardiac arrest event if applicable
35 if (m_EnterCardiacArrest)
36 {
37 m_data.GetEvents().SetEvent(eEvent::CardiacArrest, true, m_data.

GetSimulationTime());
38 m_CardiacCyclePeriod_s = 1.0e9; // Not beating, so set the period to a large

number (1.0e9 sec = 31.7 years)
39 RecordAndResetCardiacCycle();
40 GetHeartRate().SetValue(0.0, FrequencyUnit::Per_min);
41 }
42 else
43 {
44 if (HeartDriverFrequency_Per_Min == 0)
45 {
46 m_CardiacCyclePeriod_s = 5.0; // Can’t divide by 0, but we want to check this

again in a while to see if we can get out of asystole
47 GetHeartRate().SetValue(0.0, FrequencyUnit::Per_min); // Will put patient into

asystole
48 }

11

49 else
50 {
51 m_CardiacCyclePeriod_s = 60.0 / HeartDriverFrequency_Per_Min;
52 }
53 }
54

55 // Reset the systole flag and the cardiac cycle time
56 m_StartSystole = false;
57 m_CurrentCardiacCycleTime_s = 0.0;
58 }

Listing 11: The method BeginCardiacCycle(). Source : [16]

This function is directed HeartDriver(). It sets up the evolution of the current cardiac cycle. It is
used to apply the e�ects of drugs or exercise on the cardiovascular system. These e�ects will persist
until the end of the cardiac cycle, and this function will then be called again if there is no cardiac
arrest. Modi�cations to heart rate and heart compliance are calculated by BeginCardiacCycle()
and applied for the remained of the current cardiac cycle. Changes to things like heart rate and
heart contractility can only occur at the top of the current cardiac cycle, after the last cardiac cycle
has completed. This helps to avoid discontinuous behavior, such as the complete cessation of heart
function mid-contraction.

In addition, in this pre-process, we have the CalculateHeartElastance() method. This method
tracks the progression of the current cardiac cycle and changes the compliance of the left and right
heart to drive the cardiovascular circuit. Reduced compliance at the beginning of the cycle results
in increased pressure, causing �ow to leave the heart. Compliance is then reduced, allowing �ow to
enter the heart. The reduction and increase in compliance represent the systolic and diastolic parts
of the cardiac cycle respectively.

1 void Cardiovascular::CalculateHeartElastance()
2 {
3 //Shape parameters, used to define double hill functional form of the elastance
4 double alpha1 = 0.303;
5 double alpha2 = 0.508;
6 double n1 = 1.32;
7 double n2 = 21.9;
8 double maxShape = 0.598;
9 double oxygenDeficitEffect = 1.0;

10

11 if (m_data.GetEvents().IsEventActive(eEvent::MyocardiumOxygenDeficit) == true)
12 {
13 double eventDuration = m_data.GetEvents().GetEventDuration(eEvent::

MyocardiumOxygenDeficit, TimeUnit::s);
14 oxygenDeficitEffect = pow(-3E-9*eventDuration, 2) + 8E-6*eventDuration + 0.9865;
15 }
16

17 double normalizedCardiacTime = m_CurrentCardiacCycleTime_s /
m_CardiacCyclePeriod_s;

18 double elastanceShapeFunction = (pow(normalizedCardiacTime / alpha1, n1) / (1.0 +
pow(normalizedCardiacTime / alpha1, n1)))*(1.0 / (1.0 + pow(
normalizedCardiacTime / alpha2, n2))) / maxShape;

19

20 m_LeftHeartElastance_mmHg_Per_mL = oxygenDeficitEffect * ((
m_LeftHeartElastanceMax_mmHg_Per_mL - m_LeftHeartElastanceMin_mmHg_Per_mL)*
elastanceShapeFunction + m_LeftHeartElastanceMin_mmHg_Per_mL);

21 m_RightHeartElastance_mmHg_Per_mL = oxygenDeficitEffect * ((
m_RightHeartElastanceMax_mmHg_Per_mL - m_RightHeartElastanceMin_mmHg_Per_mL)*
elastanceShapeFunction + m_RightHeartElastanceMin_mmHg_Per_mL);

22 }

Listing 12: The method CalculateHeartElastance().

12

Finally, the ProcessActions() method modi�es the cardiovascular parameters and the circuit prop-
erties due to actions speci�ed by the user. The actions found in the Actions process are: cardiopul-
monary resuscitation, hemorrhage, pericardial e�usion and cardiac arrest.

1 void Cardiovascular::ProcessActions()
2 {
3 TraumaticBrainInjury();
4 Hemorrhage();
5 PericardialEffusion();
6 CPR();
7 CardiacArrest();
8 }

Listing 13: The method ProcessActions().

So we get our method for the pre-process :
1 void Cardiovascular::PreProcess()
2 {
3 // Locate the cardiac cycle in time (systole, diastole)
4 // and do the appropriate calculations based on the time location.
5 HeartDriver();
6 ProcessActions();
7 UpdateHeartRhythm();
8 // The heart rhythm is set to either Asystole (Asystole is defined as a cessation

of the heart beat.) or NormalSinus based on if the patient has an active cardiac
arrest or has triggered the asystole event some other way.

9

10 }

Listing 14: The method Preprocess().

• Process : The function already implemented CalculateVitalSigns() takes the current time step’s
circuit quantities to calculate important system-level quantities for the current time step. The sys-
tem pressures and �ow rates related to shunting are calculated here. In addition, di�erent cardiac
events are triggered. [16]

1 void Cardiovascular::CalculateVitalSigns()
2 {
3 // Grab data from the circuit in order to calculate a running mean
4 const double AortaNodePressure_mmHg = m_Aorta->GetPressure(PressureUnit::mmHg);
5 const double AortaNodeCO2PartialPressure_mmHg = m_AortaCO2 == nullptr ? 0 :

m_AortaCO2->GetPartialPressure(PressureUnit::mmHg); // This is here so we can
Tune circuit w/o substances

6 const double LeftPulmonaryArteryVolume_mL = m_LeftPulmonaryArteries->GetVolume(
VolumeUnit::mL);

7 const double RightPulmonaryArteryVolume_mL = m_RightPulmonaryArteries->GetVolume(
VolumeUnit::mL);

8 const double TotalPulmonaryArteryVolume_mL = LeftPulmonaryArteryVolume_mL +
RightPulmonaryArteryVolume_mL;

9 const double LeftPulmonaryArteryPressure_mmHg = m_LeftPulmonaryArteries->
GetPressure(PressureUnit::mmHg);

10 ...
11 ...
12

13 // Record high and low values to compute for systolic and diastolic pressures:
14 if (AortaNodePressure_mmHg > m_CardiacCycleAortaPressureHigh_mmHg)
15 m_CardiacCycleAortaPressureHigh_mmHg = AortaNodePressure_mmHg;
16 if (AortaNodePressure_mmHg < m_CardiacCycleAortaPressureLow_mmHg)
17 m_CardiacCycleAortaPressureLow_mmHg = AortaNodePressure_mmHg;
18 if (PulmonaryArteryNodePressure_mmHg >

m_CardiacCyclePulmonaryArteryPressureHigh_mmHg)
19 m_CardiacCyclePulmonaryArteryPressureHigh_mmHg =

PulmonaryArteryNodePressure_mmHg;

13

20 if (PulmonaryArteryNodePressure_mmHg <
m_CardiacCyclePulmonaryArteryPressureLow_mmHg)

21 m_CardiacCyclePulmonaryArteryPressureLow_mmHg = PulmonaryArteryNodePressure_mmHg
;

22

23 // Get Max of Left Ventricle Volume over the course of a heart beat for end
diastolic volume

24 if (LHeartVolume_mL > m_CardiacCycleDiastolicVolume_mL)
25 m_CardiacCycleDiastolicVolume_mL = LHeartVolume_mL;
26

27 /// \todo Make sure irreversible state is hit before we get here.
28 if (m_CardiacCycleAortaPressureLow_mmHg < -2.0)
29 {
30 Fatal("Diastolic pressure has fallen below zero.");
31 /// \error Fatal: Diastolic pressure has fallen below -2
32 }
33 if (m_CardiacCycleAortaPressureHigh_mmHg > 700.0)
34 {
35 Fatal("Systolic pressure has exceeded physiologic range.");
36 /// \error Fatal: Systolic pressure has exceeded 700
37 }
38

39 // Pressures\Flows from circuit
40 GetArterialPressure().SetValue(AortaNodePressure_mmHg, PressureUnit::mmHg);
41 GetPulmonaryArterialPressure().SetValue(PulmonaryArteryNodePressure_mmHg,

PressureUnit::mmHg);
42 GetCentralVenousPressure().SetValue(VenaCavaPressure_mmHg, PressureUnit::mmHg);
43 GetCerebralBloodFlow().Set(m_Brain->GetInFlow());
44 GetIntracranialPressure().Set(m_Brain->GetPressure());
45 GetCerebralPerfusionPressure().SetValue(GetMeanArterialPressure(PressureUnit::mmHg

) - GetIntracranialPressure(PressureUnit::mmHg), PressureUnit::mmHg);
46

47 if (m_data.GetState() > EngineState::AtSecondaryStableState)
48 {// Don’t throw events if we are initializing
49

50 // Check for different events :
51

52

53 // Check for hypovolemic shock
54 /// \event Patient: Hypovolemic Shock: blood volume below 65% of its normal value
55 if (GetBloodVolume().GetValue(VolumeUnit::mL) <= (m_data.GetConfiguration().

GetMinimumBloodVolumeFraction()* m_data.GetCurrentPatient().
GetBloodVolumeBaseline(VolumeUnit::mL)))

56 {
57 m_data.GetEvents().SetEvent(eEvent::HypovolemicShock, true, m_data.

GetSimulationTime());
58 }
59 else
60 {
61 m_data.GetEvents().SetEvent(eEvent::HypovolemicShock, false, m_data.

GetSimulationTime());
62 }
63

64 if (GetMeanArterialPressure().GetValue(PressureUnit::mmHg) <= 20)
65 {
66 m_data.GetEvents().SetEvent(eEvent::CardiovascularCollapse, true, m_data.

GetSimulationTime());
67 }
68 else
69 {
70 m_data.GetEvents().SetEvent(eEvent::CardiovascularCollapse, false, m_data.

GetSimulationTime());
71 }
72

73 //Check for cardiogenic shock

14

74 if (GetCardiacIndex().GetValue(VolumePerTimeAreaUnit::L_Per_min_m2) < 2.2 &&
75 GetSystolicArterialPressure(PressureUnit::mmHg) < 90.0 &&
76 GetPulmonaryCapillariesWedgePressure(PressureUnit::mmHg) > 15.0)
77 {
78 /// \event Patient: Cardiogenic Shock: Cardiac Index has fallen below 2.2 L/

min-m^2, Systolic Arterial Pressure is below 90 mmHg, and Pulmonary Capillary
Wedge Pressure is above 15.0.

79 ///
80 m_data.GetEvents().SetEvent(eEvent::CardiogenicShock, true, m_data.

GetSimulationTime());
81 }
82 else
83 {
84 m_data.GetEvents().SetEvent(eEvent::CardiogenicShock, false, m_data.

GetSimulationTime());
85 }
86

87 //Check for Tachycardia, Bradycardia, and asystole
88 /// \event Patient: Tachycardia: heart rate exceeds 100 beats per minute. This

state is alleviated if it decreases below 90.
89 if (GetHeartRate().GetValue(FrequencyUnit::Per_min) < 90)
90 m_data.GetEvents().SetEvent(eEvent::Tachycardia, false, m_data.

GetSimulationTime());
91 if (GetHeartRate().GetValue(FrequencyUnit::Per_min) > 100)
92 m_data.GetEvents().SetEvent(eEvent::Tachycardia, true, m_data.

GetSimulationTime());
93 /// \event Patient: Bradycardia: heart rate falls below 60 beats per minute.

This state is alleviated if it increases above 65.
94 if (GetHeartRate().GetValue(FrequencyUnit::Per_min) < 60)
95 m_data.GetEvents().SetEvent(eEvent::Bradycardia, true, m_data.

GetSimulationTime());
96 if (GetHeartRate().GetValue(FrequencyUnit::Per_min) > 65)
97 m_data.GetEvents().SetEvent(eEvent::Bradycardia, false, m_data.

GetSimulationTime());
98 if (GetHeartRate().GetValue(FrequencyUnit::Per_min) == 0 || m_data.GetActions().

GetPatientActions().HasCardiacArrest())
99 {

100 m_data.GetEvents().SetEvent(eEvent::Asystole, true, m_data.GetSimulationTime()
);

101 }
102 else
103 {
104 m_data.GetEvents().SetEvent(eEvent::Asystole, false, m_data.GetSimulationTime

());
105 }
106 }
107

108 // Irreversible state if asystole persists.
109 if (GetHeartRhythm() == eHeartRhythm::Asystolic)
110 {
111 /// \event Patient: Irreversible State: heart has been in asystole for over 45

min:
112 if (m_data.GetEvents().GetEventDuration(eEvent::Asystole, TimeUnit::s) > 2700.0)

//
113 {
114 /// \irreversible Heart has been in asystole for over 45 min
115 m_data.GetEvents().SetEvent(eEvent::IrreversibleState, true, m_data.

GetSimulationTime());
116 m_ss << "Asystole has occurred for " << m_data.GetEvents().GetEventDuration(

eEvent::Asystole, TimeUnit::s) << " seconds, patient is in irreversible state.";
117 Fatal(m_ss);
118 }
119 }
120

121 // Compute blood volume

15

122 double blood_mL = 0;
123 for (SELiquidCompartment* cmpt : m_data.GetCompartments().

GetVascularLeafCompartments())
124 {
125 if (cmpt->HasVolume() && cmpt != m_Pericardium) //Don’t include pericardium
126 {
127 blood_mL += cmpt->GetVolume(VolumeUnit::mL);
128 }
129 }
130 GetBloodVolume().SetValue(blood_mL, VolumeUnit::mL);
131 }

Listing 15: The method CalculateVitalSigns(). Source : [16]

• Post-processing : The Post-process step moves everything calculated in Process from the next
time step calculation to the current time step calculation. This allows all other systems access to the
information when completing their Preprocess analysis for the next time step. [16]

2.7 The Cardiovascular Circuit

The cardiovascular circuit estimates blood pressure, �ow, and volume for organs that are represented by
several compartments. These compartments are comprised of lumped parameter models that use resistors
and capacitors. The system is discretized into nodes that are connected by paths The circuit used to rep-
resent the cardiovascular system was designed to provide a level of resolution and �delity that meets the
requirements of di�erent projects. For example, to provide a means for clearing drugs and substances from
the bloodstream, the liver and kidneys must have blood �ow, pressure, and volume calculations.

The nodes serve as connection points for the paths and are the places where the pressures are measured.
Each node contains a pressure value, which is given relative to the atmospheric reference node (indi-
cated in the diagram by the equipotential symbol). The paths contain information about the �ow rate
(volume per time). The document Circuit Methodology contains more information on circuit de�nitions
and modelling. The Substance Transport Methodology document contains more information on substance
transport. In general, nodes contain "cross-sectional" information and paths contain "cross-sectional" in-
formation. The CV circuit elements are used to model the �uid dynamics of the human CV system (hemo-
dynamics).hemodynamic pressure and �ow are calculated from the lumped parameters determined by the
circuit element. (using equations already implemented and solved by the circuit solver) [5]

16

Figure 4: The cardiovascular circuit (Source : Pulse [5])

17

3 Another approach : Bio�uidmodelling of the coupled eye-brain
system.

3.1 Context

We will look at another modelling approach, that of an eye-brain coupling, which may be similar to that of
Pulse. Microgravity conditions have been observed to induce structural and functional changes in the eyes
of many astronauts, posing serious problems for both the astronauts and their missions in space. This syn-
drome, also known as Space�ight Associated Neuro-ocular Syndrome (SANS), is characterized by many
apparently unrelated and often non-concurrent symptoms such as choroidal folds. The current under-
standing of how weightlessness environment a�ects the human body and may lead to SANS development
is still quite rudimentary. Various studies of the symptoms experienced by astronauts during long-term
missions (four to six months) have been performed, but their validity is hampered by the small size of
the subjects’ cohort. To overcome this di�culty, ground-based microgravity laboratory models have been
proposed, the most signi�cant of which is the long head down tilt experimental procedure that is used to
simulate the e�ects of microgravity on the cardiovascular system. The idea in our case is not to model
microgravity, but to understand the patterns resulting from this modelling. [17]

A complementary approach to experimental studies is the use of mathematical modeling as a tool to in-
vestigate theoretically the role of various factors potentially contributing to SANS and help elucidate the
mechanisms of their interactions and their implications in structural and functional changes in the eye.

3.2 The model.

It is a lumped parameter model of the brain and eyes, connected with a highly simpli�ed model of the
body, the electrical analogue of which is shown in the schema below The aim of the model, which describes
pressure and �ow distributions in the brain and eyes, is to predict �uid redistribution in the upper body
vasculature and variations of the intraocular pressure and the intracranial pressure following exposure to
a microgravity environment. Indeed, studies suggest that two main mechanisms may be involved in SANS
pathophysiology :

• changes in the vascular system and �uid distribution.

• changes in the brain/central nervous system and intracranial pressure.

18

Figure 5: Model of �uid �ows in the brain and eyes (Source : [17])

The physiological system is subdivided into a number of linked, interacting compartments, each of which
contains a single physical constituent, such as blood, cerebrospinal �uid, interstitial �uid and aqueous hu-
mor. The brain and eye models are coupled to each other and are linked to the rest of the body via a highly
simpli�ed model consisting of two compartments: central arteries and central veins. This description cor-
responds to a model for the human physiology of the upper part of the body. [17]

19

References

[1] What is Pulse? (2017-2021). Pulse Physiology Engine. https://pulse.kitware.com/
index.html

[2] Common Data Model and Software Framework. (2017-2021). Pulse Physiology Engine. https://
pulse.kitware.com/_c_d_m.html

[3] CDM Tables. (2017-2021). Pulse Physiology Engine. https://pulse.kitware.com/_c_d_
m_tables.html

[4] Scenario Files. (2017-2021). Pulse Physiology Engine. https://pulse.kitware.com/
_scenario_file.html

[5] Cardiovascular Methodology. (2017-2021). Pulse Physiology Engine. https://pulse.kitware.
com/_cardiovascular_methodology.html

[6] Circuit Methodology. (2017-2021). Pulse Physiology Engine. https://pulse.kitware.com/
_circuit_methodology.html

[7] Patient Methodology. (2017-2021). Pulse Physiology Engine. https://pulse.kitware.com/
_patient_methodology.html

[8] Qui sommes-nous. Groupama-FDJ Equipe Cycliste. https://www.
equipecycliste-groupama-fdj.fr/qui-sommes-nous/

[9] Fat. Wikipedia. https://en.wikipedia.org/wiki/Fat

[10] Protein. Wikipedia. https://en.wikipedia.org/wiki/Protein

[11] Calcium. Wikipedia. https://en.wikipedia.org/wiki/Calcium

[12] Anatomy and Physiology : Cardiac Output. (2021). Anatomy and Physiology. http:
//www.anaphy.com/cardiac-output/#:~:text=In%20a%20healthy%
20adult%20with%2072%20bpm%2C%20cardiac,which%20heart%20pumps%
20blood%20and%20its%20maximum%20capacity.

[13] Vinik, A-I., Erbas, T. (2013, November 11). Diabetic autonomic neuropathy. Handbook of Clinical Neu-
rology, Volume 117. 279-294. https://www.sciencedirect.com/science/article/
pii/B9780444534910000225

[14] Total Metabolic Rate. (2009, July 23). Wisdom That Heals : A Blog about Health, Nutri-
tion and Natural Healing. https://wisdomthatheals.wordpress.com/tag/
total-metabolic-rate/

[15] Partial pressure. Wikipedia. https://en.wikipedia.org/wiki/Partial_pressure

[16] GitLab SECardiovascularSystem.cpp https://gitlab.kitware.com/
physiology/engine/-/blob/master/src/cpp/cdm/system/physiology/
SECardiovascularSystem.cpp

[17] PlosOne Bio�uid modeling of the coupled eye-brain system and insights into simulated micro-
gravity conditions https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0216012p

20

https://pulse.kitware.com/index.html
https://pulse.kitware.com/index.html
https://pulse.kitware.com/_c_d_m.html
https://pulse.kitware.com/_c_d_m.html
https://pulse.kitware.com/_c_d_m_tables.html
https://pulse.kitware.com/_c_d_m_tables.html
https://pulse.kitware.com/_scenario_file.html
https://pulse.kitware.com/_scenario_file.html
https://pulse.kitware.com/_cardiovascular_methodology.html
https://pulse.kitware.com/_cardiovascular_methodology.html
https://pulse.kitware.com/_circuit_methodology.html
https://pulse.kitware.com/_circuit_methodology.html
https://pulse.kitware.com/_patient_methodology.html
https://pulse.kitware.com/_patient_methodology.html
https://www.equipecycliste-groupama-fdj.fr/qui-sommes-nous/
https://www.equipecycliste-groupama-fdj.fr/qui-sommes-nous/
https://en.wikipedia.org/wiki/Fat
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Calcium
http://www.anaphy.com/cardiac-output/#:~:text=In%20a%20healthy%20adult%20with%2072%20bpm%2C%20cardiac,which%20heart%20pumps%20blood%20and%20its%20maximum%20capacity.
http://www.anaphy.com/cardiac-output/#:~:text=In%20a%20healthy%20adult%20with%2072%20bpm%2C%20cardiac,which%20heart%20pumps%20blood%20and%20its%20maximum%20capacity.
http://www.anaphy.com/cardiac-output/#:~:text=In%20a%20healthy%20adult%20with%2072%20bpm%2C%20cardiac,which%20heart%20pumps%20blood%20and%20its%20maximum%20capacity.
http://www.anaphy.com/cardiac-output/#:~:text=In%20a%20healthy%20adult%20with%2072%20bpm%2C%20cardiac,which%20heart%20pumps%20blood%20and%20its%20maximum%20capacity.
https://www.sciencedirect.com/science/article/pii/B9780444534910000225
https://www.sciencedirect.com/science/article/pii/B9780444534910000225
https://wisdomthatheals.wordpress.com/tag/total-metabolic-rate/
https://wisdomthatheals.wordpress.com/tag/total-metabolic-rate/
https://en.wikipedia.org/wiki/Partial_pressure
https://gitlab.kitware.com/physiology/engine/-/blob/master/src/cpp/cdm/system/physiology/SECardiovascularSystem.cpp
https://gitlab.kitware.com/physiology/engine/-/blob/master/src/cpp/cdm/system/physiology/SECardiovascularSystem.cpp
https://gitlab.kitware.com/physiology/engine/-/blob/master/src/cpp/cdm/system/physiology/SECardiovascularSystem.cpp
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216012p
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216012p

	Introduction.
	General context.
	Company presentation.
	Subjects explanation.
	Project management.

	Pulse
	Pulse Physiology Engine framework.
	First steps with Pulse.
	Parameters description.
	Using Pulse.
	How to configure an exercise scenario.
	How to execute a scenario.

	How does the cardiovascular system work?
	Cardiovascular modeling
	The Cardiovascular Circuit

	Another approach : Biofluid modelling of the coupled eye-brain system.
	Context
	The model.

