Elasticity and toolbox Coefficient Form PDEs

Céline Van Landeghem

1 Introduction

We want to express the elasticity equations in the generic form of the toolbox Coefficient Form PDEs given by:

$$
\begin{equation*}
d \frac{\partial u}{\partial t}+\nabla \cdot(-c \nabla u-\alpha u+\gamma)+\beta \cdot \nabla u+a u=f \tag{1}
\end{equation*}
$$

2 Stationary linear elasticity in dimension 2

We solve the following problem :

$$
\begin{equation*}
-\nabla \cdot \sigma(\eta)=f \tag{2}
\end{equation*}
$$

where :

$$
\begin{array}{cccc}
\eta: & S & \rightarrow & \mathbf{R}^{2} \\
& \eta(X) & \mapsto & \left(\eta_{1}(X), \eta_{2}(X)\right), X \in S \subseteq \mathbf{R}^{2}
\end{array}
$$

In order to use the toolbox, the equation (2) must be written component by component. To do this, we start by calculating $\sigma(\eta)$:

$$
\begin{equation*}
\sigma(\eta)=\lambda \operatorname{tr}(e(\eta)) I_{2}+2 \mu e(\eta) \tag{3}
\end{equation*}
$$

We have :

$$
\begin{aligned}
& \nabla \eta=\left(\begin{array}{ll}
\partial_{x} \eta_{1} & \partial_{y} \eta_{1} \\
\partial_{x} \eta_{2} & \partial_{y} \eta_{2}
\end{array}\right), \nabla \eta^{T}=\left(\begin{array}{ll}
\partial_{x} \eta_{1} & \partial_{x} \eta_{2} \\
\partial_{y} \eta_{1} & \partial_{y} \eta_{2}
\end{array}\right) \\
& e(\eta)=\frac{1}{2}\left(\nabla \eta+\nabla \eta^{T}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 \partial_{x} \eta_{1} & \partial_{y} \eta_{1}+\partial_{x} \eta_{2} \\
\partial_{x} \eta_{2}+\partial_{y} \eta_{1} & 2 \partial_{y} \eta_{2}
\end{array}\right) \\
& \operatorname{tr}(e(\eta))=\nabla \cdot \eta
\end{aligned}
$$

So, we get for (3) :

$$
\sigma(\eta)=\lambda\left(\begin{array}{cc}
\nabla \cdot \eta & 0 \\
0 & \nabla \cdot \eta
\end{array}\right)+\mu\left(\begin{array}{cc}
2 \partial_{x} \eta_{1} & \partial_{y} \eta_{1}+\partial_{x} \eta_{2} \\
\partial_{x} \eta_{2}+\partial_{y} \eta_{1} & 2 \partial_{y} \eta_{2}
\end{array}\right)
$$

We want to solve the system (2) component by component. This new problem is given by :

$$
\left\{\begin{align*}
-\nabla \cdot \sigma_{1,:} & =f_{1} \tag{4}\\
-\nabla \cdot \sigma_{2,:} & =f_{2}
\end{align*}\right.
$$

Using our expression of $\sigma(\eta)$, we get for the first equation of (4):

$$
\begin{aligned}
-\nabla \cdot \sigma_{1,:} & =-\nabla \cdot\left(\lambda[\nabla \cdot \eta, 0]+\mu\left[2 \partial_{x} \eta_{1}, \partial_{y} \eta_{1}+\partial_{x} \eta_{2}\right]\right) \\
& =-\nabla \cdot\left(\lambda[\nabla \cdot \eta, 0]+\mu\left[\partial_{x} \eta_{1}, \partial_{y} \eta_{1}\right]+\mu\left[\partial_{x} \eta_{1}, \partial_{x} \eta_{2}\right]\right) \\
& =-\nabla \cdot\left(\mu \nabla \eta_{1}+\lambda\left[\partial_{x} \eta_{1}+\partial_{y} \eta_{2}, 0\right]+\mu\left[\partial_{x} \eta_{1}, \partial_{x} \eta_{2}\right]\right) \\
& =-\nabla \cdot\left(\mu \nabla \eta_{1}+\left[(\lambda+\mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{x} \eta_{2}\right]\right) \\
& =\nabla \cdot\left(-\mu \nabla \eta_{1}-\left[(\lambda+\mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{x} \eta_{2}\right]\right)
\end{aligned}
$$

So to write this equation in generic form (1), we have to choose :

$$
u=\eta_{1}, c=\mu, \gamma=-\left[(\lambda+\mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{x} \eta_{2}\right] \text { and } f=f_{1}
$$

All the other coefficients are equal to 0 .
For the second equation of (4) we do the same calculations :

$$
\begin{aligned}
-\nabla \cdot \sigma_{2,:} & =-\nabla \cdot\left(\lambda[0, \nabla \cdot \eta]+\mu\left[\partial_{x} \eta_{2}+\partial_{y} \eta_{1}, 2 \partial_{y} \eta_{2}\right]\right) \\
& =-\nabla \cdot\left(\lambda[0, \nabla \cdot \eta]+\mu\left[\partial_{x} \eta_{2}, \partial_{y} \eta_{2}\right]+\mu\left[\partial_{y} \eta_{1}, \partial_{y} \eta_{2}\right]\right) \\
& =-\nabla \cdot\left(\mu \nabla \eta_{2}+\lambda\left[0, \partial_{x} \eta_{1}+\partial_{y} \eta_{2}\right]+\mu\left[\partial_{y} \eta_{1}, \partial_{y} \eta_{2}\right]\right) \\
& =-\nabla \cdot\left(\mu \nabla \eta_{2}+\left[\mu \partial_{y} \eta_{1},(\lambda+\mu) \partial_{y} \eta_{2}+\lambda \partial_{x} \eta_{1}\right]\right) \\
& =\nabla \cdot\left(-\mu \nabla \eta_{2}-\left[\mu \partial_{y} \eta_{1},(\lambda+\mu) \partial_{y} \eta_{2}+\lambda \partial_{x} \eta_{1}\right]\right)
\end{aligned}
$$

In generic form (1), we have to choose :

$$
u=\eta_{2}, c=\mu, \gamma=-\left[\mu \partial_{y} \eta_{1},(\lambda+\mu) \partial_{y} \eta_{2}+\lambda \partial_{x} \eta_{1}\right] \text { and } f=f_{2}
$$

All the other coefficients are equal to 0 .
For the implementation of the stationary linear elasticity (2) in the toolbox cfpdes, we write the two equations of (4) with the coefficients defined as above.

We can then visualize η using Paraview, by exporting the vectorial expression $\left[\eta_{1}, \eta_{2}\right]:$
"eta":
\{
"expr":"\{equation1_eta1, equation2_eta 2$\}$:equation1_eta1:equation2_eta 2 "
\}

2.1 Results

For the tests, we use a material for which the Poisson ration ν and the Young modulu E are set to :

$$
\nu=0.3, E=1 e 6
$$

So, the Lamé coefficients are equal to :

$$
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)}, \mu=\frac{E}{2(1+\nu)}
$$

For the simulations, we use a beam. With a refinement $h=0.1$, we have the following mesh:
\square

First test: beam clamped at two sides subject to gravity
In this case, we have homogeneous Dirichlet conditions on the left and right side of the beam. We choose for the mesh a refinement $h=0.01$. As the beam is subjected to gravity, $f=(0,-9.81)$.

Visualization of η obtained with Paraview :

Figure 1: Beam clamped at two sides subject to gravity

Second test: beam clamped on one side subject to gravity

We have homogeneous Dirichlet conditions on the left side of the beam. We use $h=0.01$ for the mesh. The beam is subjected to gravity, so $f=(0,-9.81)$.

Visualization of η obtained with Paraview :

Figure 2: Beam clamped on one side subject to gravity

3 Linear elasticity in dimension 2

Now we are interested in the equation :

$$
\begin{equation*}
\partial_{t t} \eta-\nabla \cdot \sigma(\eta)=f \tag{5}
\end{equation*}
$$

where:

$$
\begin{array}{cccc}
\eta: & {[0, T] \times \mathrm{x} S} & \rightarrow & \mathbf{R}^{2} \\
\eta(t, X) & \mapsto & \left(\eta_{1}(t, X), \eta_{2}(t, X)\right), X \in S \subseteq \mathbf{R}^{2}
\end{array}
$$

Since we cannot solve second time derivatives with this toolbox, we must first calculate the first time derivative. We obtain the following system of equations:

$$
\left\{\begin{array}{l}
\partial_{t} \eta_{1}=v_{1} \tag{6}\\
\partial_{t} \eta_{2}=v_{2} \\
\partial_{t} v_{1}-\nabla \cdot \sigma_{1,:}=f_{1} \\
\partial_{t} v_{2}-\nabla \cdot \sigma_{2,:}=f_{2}
\end{array}\right.
$$

We have to implement this four equations. Let's check how to write them in the generic form (1).

For the first equation of (6), we have directly :

$$
u=\eta_{1}, d=1, f=v_{1}
$$

All other coefficients are equal to 0 .
In the same way, we have for the second equation :

$$
u=\eta_{2}, d=1, f=v_{2}
$$

Consider now the third equation of (6). As we have a time derivative of v_{1}, this variable represents our unknown. As $\nabla \cdot \sigma_{1,:}$:

$$
-\nabla \cdot \sigma_{1,:}=\nabla \cdot\left(-\mu \nabla \eta_{1}-\left[(\lambda+\mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{x} \eta_{2}\right]\right)
$$

does not depend on v_{1} we have to rewrite this expression and put it in γ.

$$
\begin{aligned}
-\nabla \cdot \sigma_{1,:} & =\nabla \cdot\left(-\mu \nabla \eta_{1}-\left[(\lambda+\mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{x} \eta_{2}\right]\right) \\
& =\nabla \cdot\left(-\mu\left[\partial_{x} \eta_{1}, \partial_{y} \eta_{1}\right]-\left[(\lambda+\mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{x} \eta_{2}\right]\right) \\
& =\nabla \cdot\left(-\left[(\lambda+2 \mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{y} \eta_{1}+\mu \partial_{x} \eta_{2}\right]\right)
\end{aligned}
$$

So for this equation we find :

$$
u=v_{1}, d=1, \gamma=-\left[(\lambda+2 \mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{y} \eta_{1}+\mu \partial_{x} \eta_{2}\right], f=f_{1}
$$

For the last equation, we do the same calculations:

$$
\begin{aligned}
-\nabla \cdot \sigma_{2,:} & =\nabla \cdot\left(-\mu \nabla \eta_{2}-\left[\mu \partial_{y} \eta_{1},(\lambda+\mu) \partial_{y} \eta_{2}+\lambda \partial_{x} \eta_{1}\right]\right) \\
& =\nabla \cdot\left(-\left[\mu \partial_{x} \eta_{2}+\mu \partial_{y} \eta_{1},(\lambda+2 \mu) \partial_{y} \eta_{2}+\lambda \partial_{x} \eta_{1}\right]\right)
\end{aligned}
$$

So we have for the fourth equation of (6):

$$
u=v_{2}, d=1, \gamma=-\left[\mu \partial_{x} \eta_{2}+\mu \partial_{y} \eta_{1},(\lambda+2 \mu) \partial_{y} \eta_{2}+\lambda \partial_{x} \eta_{1}\right], f=f_{2}
$$

3.1 Results

We do the same tests as for the stationary linear elasticity. For the four unknowns, $\eta_{1}, \eta_{2}, v_{1}, v_{2}$, we consider initial conditions equal to 0 . We do the simulations on the time interval $[0 s, 3 s]$, with a step of $0.1 s$.

First test: beam clamped at two sides subject to gravity
The visualization of η obtained with Paraview allows to observe the movement of the beam. To better visualize this movement, we use a scale factor equal to 10 .

$2 *$

(e) $\mathrm{t}=1.0$

Figure 3: Beam clamped at two sides subject to gravity

Second test: beam clamped on one side subject to gravity

Depending on the time, we obtain, with a scale factor equal to 1 , the following visualization of η :

Figure 4: Beam clamped on one side subject to gravity

4 Additive model for active elasticity

We consider the following problem :

$$
\begin{cases}\partial_{t t} \eta-\nabla \cdot\left[\sigma-F \Sigma^{*}\right]=f & \text { in } \mathrm{S} \tag{7}\\ \sigma n=F \Sigma^{*} n & \text { on } \partial S_{N} \\ \eta=0 & \text { on } \partial S_{D}\end{cases}
$$

where:

- $F(t, X)=I_{2}+\nabla \eta$, the deformation gradient.
- $\Sigma^{*}=\Sigma_{a} e_{a} \otimes e_{a}$. the active elasticity stress tensor.
- e_{a} a vector representing the direction of active fibres.
- Σ_{a} a scalar function.

We like to rewrite the problem (7) in the generic form of the toolbox cfpdes (1). We write the equations component by component and we obtain a new problem :

$$
\begin{cases}\partial_{t} \eta_{1}=v_{1} & \text { in } \mathrm{S} \tag{8}\\ \partial_{t} \eta_{2}=v_{2} & \text { in } \mathrm{S} \\ \partial_{t} v_{1}-\nabla \cdot\left[\sigma_{1,:}-\left(F \Sigma^{*}\right)_{1,:}\right]=f_{1} & \text { in } \mathrm{S} \\ \partial_{t} v_{2}-\nabla \cdot\left[\sigma_{2,:}-\left(F \Sigma^{*}\right)_{2,:}\right]=f_{2} & \text { in } \mathrm{S} \\ \left(\sigma_{1,:}-\left(F \Sigma^{*}\right)_{1,:}\right) n=0 & \text { on } \partial S_{N} \\ \left(\sigma_{2,:}-\left(F \Sigma^{*}\right)_{2,:}\right) n=0 & \text { on } \partial S_{N} \\ \eta_{1}=0 & \text { on } \partial S_{D} \\ \eta_{2}=0 & \text { on } \partial S_{D}\end{cases}
$$

The first two equations of this system are equal to those of the linear elasticity case. To define the next two, we start by analyzing the term : $F \Sigma^{*}$. We have :

$$
\Sigma^{*}=\Sigma_{a} e_{a} \otimes e_{a}
$$

If we assume that $e_{a}=\left[e_{a 1}, e_{a 2}\right]$, we get :

$$
\Sigma^{*}=\Sigma_{a}\left(\begin{array}{ll}
e_{a 1} e_{a 1} & e_{a 1} e_{a 2} \\
e_{a 1} e_{a 2} & e_{a 2} e_{a 2}
\end{array}\right)=\left(\begin{array}{cc}
\Sigma_{a} e_{a 1} e_{a 1} & \Sigma_{a} e_{a 1} e_{a 2} \\
\Sigma_{a} e_{a 1} e_{a 2} & \Sigma_{a} e_{a 2} e_{a 2}
\end{array}\right)
$$

So :

$$
\begin{aligned}
F \Sigma^{*} & =\left(I_{2}+\nabla \eta\right)\left(\begin{array}{cc}
\Sigma_{a} e_{a 1} e_{a 1} & \Sigma_{a} e_{a 1} e_{a 2} \\
\Sigma_{a} e_{a 1} e_{a 2} & \Sigma_{a} e_{a 2} e_{a 2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+\partial_{x} \eta_{1} & \partial_{y} \eta_{1} \\
\partial_{x} \eta_{2} & 1+\partial_{y} \eta_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{a} e_{a 1} e_{a 1} & \Sigma_{a} e_{a 1} e_{a 2} \\
\Sigma_{a} e_{a 1} e_{a 2} & \Sigma_{a} e_{a 2} e_{a 2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(1+\partial_{x} \eta_{1}\right)\left(\Sigma_{a} e_{a 1} e_{a 1}\right)+\left(\partial_{y} \eta_{1}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right) & \left(1+\partial_{x} \eta_{1}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right)+\left(\partial_{y} \eta_{1}\right)\left(\Sigma_{a} e_{a 2} e_{a 2}\right) \\
\left(\partial_{x} \eta_{2}\right)\left(\Sigma_{a} e_{a 1} e_{a 1}\right)+\left(1+\partial_{y} \eta_{2}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right) & \left(\partial_{x} \eta_{2}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right)+\left(1+\partial_{y} \eta_{2}\right)\left(\Sigma_{a} e_{a 2} e_{a 2}\right)
\end{array}\right)
\end{aligned}
$$

This calculation allows us to deduce that:

$$
\begin{aligned}
& \left(F \Sigma^{*}\right)_{1,:}=\left[\left(1+\partial_{x} \eta_{1}\right)\left(\Sigma_{a} e_{a 1} e_{a 1}\right)+\left(\partial_{y} \eta_{1}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right),\left(1+\partial_{x} \eta_{1}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right)+\left(\partial_{y} \eta_{1}\right)\left(\Sigma_{a} e_{a 2} e_{a 2}\right)\right] \\
& \left(F \Sigma^{*}\right)_{2,:}=\left[\left(\partial_{x} \eta_{2}\right)\left(\Sigma_{a} e_{a 1} e_{a 1}\right)+\left(1+\partial_{y} \eta_{2}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right),\left(\partial_{x} \eta_{2}\right)\left(\Sigma_{a} e_{a 1} e_{a 2}\right)+\left(1+\partial_{y} \eta_{2}\right)\left(\Sigma_{a} e_{a 2} e_{a 2}\right)\right]
\end{aligned}
$$

Let us now consider the third equation of the problem (8). In the generic form (1), the unknown is v_{1}. So, the term $-\left(\sigma_{1,:}-\left(F \Sigma^{*}\right)_{1,:}\right)$ must be put in γ, with $\sigma_{1, \text { : }}$ defined as in the part of the linear elasticity. We do same for the fourth equation of (8) with $\gamma=-\left(\sigma_{2,:}-\left(F \Sigma^{*}\right)_{2,:}\right)$.

4.1 Internal activity for a pulmonary cilium

In this case, we consider $e_{a}=[0,1]$ We can rewrite our expressions for $F \Sigma^{*}$:

$$
\begin{aligned}
& \left(F \Sigma^{*}\right)_{1,:}=\left[0,\left(\partial_{y} \eta_{1}\right) \Sigma_{a}\right] \\
& \left(F \Sigma^{*}\right)_{2,:}=\left[0,\left(1+\partial_{y} \eta_{2}\right) \Sigma_{a}\right]
\end{aligned}
$$

With these values for the vector e_{a} the γ expression for the third and fourth equation of (8) becomes easier :

$$
\begin{aligned}
& -\left(\sigma_{1,:}-\left(F \Sigma^{*}\right)_{1,:}\right)=-\left[(\lambda+2 \mu) \partial_{x} \eta_{1}+\lambda \partial_{y} \eta_{2}, \mu \partial_{y} \eta_{1}+\mu \partial_{x} \eta_{2}-\left(\partial_{y} \eta_{1}\right) \Sigma_{a}\right] \\
& -\left(\sigma_{2,:}-\left(F \Sigma^{*}\right)_{2,:}\right)=-\left[\mu \partial_{x} \eta_{2}+\mu \partial_{y} \eta_{1},(\lambda+2 \mu) \partial_{y} \eta_{2}+\lambda \partial_{x} \eta_{1}-\left(1+\partial_{y} \eta_{2}\right) \Sigma_{a}\right]
\end{aligned}
$$

4.1.1 Bending

4.1.2 Flapping

