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1 Introduction

We want to express the elasticity equations in the generic form of the toolbox
Coefficient Form PDEs given by:

d
∂u

∂t
+∇ · (−c∇u− αu+ γ) + β · ∇u+ au = f (1)

2 Stationary linear elasticity in dimension 2

We solve the following problem :

−∇ · σ(η) = f (2)

where :

η : S → R2

η(X) 7→ (η1(X), η2(X)), X ∈ S ⊆ R2

In order to use the toolbox, the equation (2) must be written component by
component. To do this, we start by calculating σ(η) :

σ(η) = λtr(e(η))I2 + 2µe(η) (3)

We have :

∇η =

(
∂xη1 ∂yη1
∂xη2 ∂yη2

)
,∇ηT =

(
∂xη1 ∂xη2
∂yη1 ∂yη2

)
e(η) =

1

2
(∇η +∇ηT ) =

1

2

(
2∂xη1 ∂yη1 + ∂xη2

∂xη2 + ∂yη1 2∂yη2

)
tr(e(η)) = ∇ · η

So, we get for (3) :

σ(η) = λ

(
∇ · η 0

0 ∇ · η

)
+ µ

(
2∂xη1 ∂yη1 + ∂xη2

∂xη2 + ∂yη1 2∂yη2

)
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We want to solve the system (2) component by component. This new problem
is given by :

{
−∇ · σ1,: = f1

−∇ · σ2,: = f2
(4)

Using our expression of σ(η), we get for the first equation of (4):

−∇ · σ1,: = −∇ · (λ[∇ · η, 0] + µ[2∂xη1, ∂yη1 + ∂xη2])

= −∇ · (λ[∇ · η, 0] + µ[∂xη1, ∂yη1] + µ[∂xη1, ∂xη2])

= −∇ · (µ∇η1 + λ[∂xη1 + ∂yη2, 0] + µ[∂xη1, ∂xη2])

= −∇ · (µ∇η1 + [(λ+ µ)∂xη1 + λ∂yη2, µ∂xη2])

= ∇ · (−µ∇η1 − [(λ+ µ)∂xη1 + λ∂yη2, µ∂xη2])

So to write this equation in generic form (1), we have to choose :

u = η1, c = µ, γ = −[(λ+ µ)∂xη1 + λ∂yη2, µ∂xη2] and f = f1.

All the other coefficients are equal to 0.

For the second equation of (4) we do the same calculations :

−∇ · σ2,: = −∇ · (λ[0,∇ · η] + µ[∂xη2 + ∂yη1, 2∂yη2])

= −∇ · (λ[0,∇ · η] + µ[∂xη2, ∂yη2] + µ[∂yη1, ∂yη2])

= −∇ · (µ∇η2 + λ[0, ∂xη1 + ∂yη2] + µ[∂yη1, ∂yη2])

= −∇ · (µ∇η2 + [µ∂yη1, (λ+ µ)∂yη2 + λ∂xη1])

= ∇ · (−µ∇η2 − [µ∂yη1, (λ+ µ)∂yη2 + λ∂xη1])

In generic form (1), we have to choose :

u = η2, c = µ, γ = −[µ∂yη1, (λ+ µ)∂yη2 + λ∂xη1] and f = f2.

All the other coefficients are equal to 0.

For the implementation of the stationary linear elasticity (2) in the toolbox
cfpdes, we write the two equations of (4) with the coefficients defined as above.
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We can then visualize η using Paraview, by exporting the vectorial expression
[η1, η2] :

” eta ” :
{

” expr ” :”{ equat ion1 eta1 , equat i on2 e ta2 } : equat i on1 e ta1 : equat i on2 e ta2 ”
}

2.1 Results

For the tests, we use a material for which the Poisson ration ν and the Young
modulu E are set to :

ν = 0.3, E = 1e6

So, the Lamé coefficients are equal to :

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

For the simulations, we use a beam. With a refinement h = 0.1, we have the
following mesh:

First test: beam clamped at two sides subject to gravity

In this case, we have homogeneous Dirichlet conditions on the left and right side
of the beam. We choose for the mesh a refinement h = 0.01. As the beam is
subjected to gravity, f = (0,−9.81).

Visualization of η obtained with Paraview :

(a) Scale factor = 40 (b) Scale factor = 0, 40

Figure 1: Beam clamped at two sides subject to gravity
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Second test: beam clamped on one side subject to gravity

We have homogeneous Dirichlet conditions on the left side of the beam. We use
h = 0.01 for the mesh. The beam is subjected to gravity, so f = (0,−9.81).

Visualization of η obtained with Paraview :

(a) Scale factor = 1 (b) Scale factor = 0, 1

Figure 2: Beam clamped on one side subject to gravity

3 Linear elasticity in dimension 2

Now we are interested in the equation :

∂ttη −∇ · σ(η) = f (5)

where :

η : [0, T ]xS → R2

η(t,X) 7→ (η1(t,X), η2(t,X)), X ∈ S ⊆ R2

Since we cannot solve second time derivatives with this toolbox, we must first
calculate the first time derivative. We obtain the following system of equations:


∂tη1 = v1

∂tη2 = v2

∂tv1 −∇ · σ1,: = f1

∂tv2 −∇ · σ2,: = f2

(6)

We have to implement this four equations. Let’s check how to write them in
the generic form (1).
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For the first equation of (6), we have directly :

u = η1, d = 1, f = v1

All other coefficients are equal to 0.

In the same way, we have for the second equation :

u = η2, d = 1, f = v2

Consider now the third equation of (6). As we have a time derivative of v1, this
variable represents our unknown. As ∇ · σ1,: :

−∇ · σ1,: = ∇ · (−µ∇η1 − [(λ+ µ)∂xη1 + λ∂yη2, µ∂xη2])

does not depend on v1 we have to rewrite this expression and put it in γ.

−∇ · σ1,: = ∇ · (−µ∇η1 − [(λ+ µ)∂xη1 + λ∂yη2, µ∂xη2])

= ∇ · (−µ[∂xη1, ∂yη1]− [(λ+ µ)∂xη1 + λ∂yη2, µ∂xη2])

= ∇ · (−[(λ+ 2µ)∂xη1 + λ∂yη2, µ∂yη1 + µ∂xη2])

So for this equation we find :

u = v1, d = 1, γ = −[(λ+ 2µ)∂xη1 + λ∂yη2, µ∂yη1 + µ∂xη2], f = f1

For the last equation, we do the same calculations:

−∇ · σ2,: = ∇ · (−µ∇η2 − [µ∂yη1, (λ+ µ)∂yη2 + λ∂xη1])

= ∇ · (−[µ∂xη2 + µ∂yη1, (λ+ 2µ)∂yη2 + λ∂xη1])

So we have for the fourth equation of (6):

u = v2, d = 1, γ = −[µ∂xη2 + µ∂yη1, (λ+ 2µ)∂yη2 + λ∂xη1], f = f2
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3.1 Results

We do the same tests as for the stationary linear elasticity. For the four un-
knowns, η1, η2, v1, v2, we consider initial conditions equal to 0. We do the sim-
ulations on the time interval [0s, 3s], with a step of 0.1s.

First test: beam clamped at two sides subject to gravity

The visualization of η obtained with Paraview allows to observe the movement
of the beam. To better visualize this movement, we use a scale factor equal to 10.

(a) t = 0.0 (b) t = 0.4

(c) t = 0.6 (d) t = 0.8

(e) t = 1.0

Figure 3: Beam clamped at two sides subject to gravity
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Second test: beam clamped on one side subject to gravity

Depending on the time, we obtain, with a scale factor equal to 1, the following
visualization of η :

(a) t = 0.0 (b) t = 0.4

(c) t = 0.8 (d) t = 1.0

(e) t = 1.4 (f) t = 2.0

Figure 4: Beam clamped on one side subject to gravity
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4 Additive model for active elasticity

We consider the following problem :


∂ttη −∇ · [σ − FΣ∗] = f in S

σn = FΣ∗n on ∂SN

η = 0 on ∂SD

(7)

where :

• F (t,X) = I2 +∇η, the deformation gradient.

• Σ∗ = Σaea ⊗ ea. the active elasticity stress tensor.

• ea a vector representing the direction of active fibres.

• Σa a scalar function.

We like to rewrite the problem (7) in the generic form of the toolbox cfpdes (1).
We write the equations component by component and we obtain a new
problem : 

∂tη1 = v1 in S

∂tη2 = v2 in S

∂tv1 −∇ · [σ1,: − (FΣ∗)1,:] = f1 in S

∂tv2 −∇ · [σ2,: − (FΣ∗)2,:] = f2 in S

(σ1,: − (FΣ∗)1,:)n = 0 on ∂SN

(σ2,: − (FΣ∗)2,:)n = 0 on ∂SN

η1 = 0 on ∂SD

η2 = 0 on ∂SD

(8)

The first two equations of this system are equal to those of the linear elasticity
case. To define the next two, we start by analyzing the term : FΣ∗. We have :

Σ∗ = Σaea ⊗ ea

If we assume that ea = [ea1, ea2], we get :

Σ∗ = Σa

(
ea1ea1 ea1ea2
ea1ea2 ea2ea2

)
=

(
Σaea1ea1 Σaea1ea2
Σaea1ea2 Σaea2ea2

)
So :

FΣ∗ = (I2 +∇η)

(
Σaea1ea1 Σaea1ea2
Σaea1ea2 Σaea2ea2

)
=

(
1 + ∂xη1 ∂yη1
∂xη2 1 + ∂yη2

)(
Σaea1ea1 Σaea1ea2
Σaea1ea2 Σaea2ea2

)
=

(
(1 + ∂xη1)(Σaea1ea1) + (∂yη1)(Σaea1ea2) (1 + ∂xη1)(Σaea1ea2) + (∂yη1)(Σaea2ea2)
(∂xη2)(Σaea1ea1) + (1 + ∂yη2)(Σaea1ea2) (∂xη2)(Σaea1ea2) + (1 + ∂yη2)(Σaea2ea2)

)
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This calculation allows us to deduce that :

(FΣ∗)1,: = [(1 + ∂xη1)(Σaea1ea1) + (∂yη1)(Σaea1ea2), (1 + ∂xη1)(Σaea1ea2) + (∂yη1)(Σaea2ea2)]

(FΣ∗)2,: = [(∂xη2)(Σaea1ea1) + (1 + ∂yη2)(Σaea1ea2), (∂xη2)(Σaea1ea2) + (1 + ∂yη2)(Σaea2ea2)]

Let us now consider the third equation of the problem (8). In the generic form
(1), the unknown is v1. So, the term −(σ1,: − (FΣ∗)1,:) must be put in γ, with
σ1,: defined as in the part of the linear elasticity. We do same for the fourth
equation of (8) with γ = −(σ2,: − (FΣ∗)2,:).

4.1 Internal activity for a pulmonary cilium

In this case, we consider ea = [0, 1] We can rewrite our expressions for FΣ∗ :

(FΣ∗)1,: = [0, (∂yη1)Σa]

(FΣ∗)2,: = [0, (1 + ∂yη2)Σa]

With these values for the vector ea the γ expression for the third and fourth
equation of (8) becomes easier :

−(σ1,: − (FΣ∗)1,:) = −[(λ+ 2µ)∂xη1 + λ∂yη2, µ∂yη1 + µ∂xη2 − (∂yη1)Σa]

−(σ2,: − (FΣ∗)2,:) = −[µ∂xη2 + µ∂yη1, (λ+ 2µ)∂yη2 + λ∂xη1 − (1 + ∂yη2)Σa]

4.1.1 Bending

4.1.2 Flapping
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