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Finite-Element Formulations for Systems With
High-Temperature Superconductors
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Abstract—In this article, we consider finite-element models for
high-temperature superconductors and compare two dual formu-
lations, either magnetic-field conforming or magnetic-flux-density
conforming. The electrical resistivity of superconductors is de-
scribed by a power law and is strongly nonlinear. We compare
the accuracy and the efficiency of the dual formulations by starting
from simple considerations on the concavity/convexity of the con-
stitutive law involved in each case. We then study the numerical
behavior of each formulation in one-, two-, and three-dimensional
problems and compare their results against benchmarks. We draw
general recommendations for the choice of a formulation, an itera-
tion scheme for treating the corresponding linearized constitutive
law, and a time-stepping extrapolation scheme. This approach is
extended to soft ferromagnetic materials with a saturation law.
Since the outcome of our analysis shows that recommended for-
mulations for treating ferromagnets are just the opposite of those
for treating superconductors, we suggest a coupled formulation for
systems where both types of materials are present. The coupled
formulation is shown to be accurate and more efficient than single
formulations applied indistinctly to all materials.

Index Terms—Finite-element (FE) analysis, high-temperature
superconductors (HTSs), magnetic materials, nonlinear equations.

I. INTRODUCTION

MODELING accurately and efficiently the magnetic re-
sponse of high-temperature superconductors (HTSs) is

of high importance in numerous applications, such as en-
ergy transport and storage [1], trapped-field magnets, magnetic
shields, and levitating devices [2]. Among the existing numerical
methods, the finite-element (FE) method allows one to tackle
complex geometries and is commonly used for the design and
analysis of engineering devices [3]. The FE method expresses
the problem in a weak form and different formulations of the
same problem are available. More specifically in the framework
of magnetodynamics, two classes of dual formulations exist:
h-conform formulations, which respect the continuity conditions
for magnetic fields, and b-conform ones, which guarantee the
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continuity of magnetic flux. These two classes involve the HTS
nonlinear laws in inverse ways, through either the electrical
resistivity or the electrical conductivity, and thus may exhibit dif-
ferent numerical behaviors. Earlier investigations of h-conform
formulations for solving superconductor systems can be found
in [4] and [5] for the h-formulation, and in [6]–[9] for t–ω
formulations. Similar works on b-conform formulations can be
found in [6], [8], [10]–[13] for a–v formulations. To date, a few
comparisons of the different formulations have been conducted
in the literature, see for instance [6] for a comparison of a–v
and t–ω formulations in two dimensions (2-D) with a Newton–
Raphson time stepping scheme, [14] for a comparison of the
h-, t–ω, and a–v–j formulations in 2-D, [3] for an overview,
and [15] for a summary of methods for computing ac losses.
In parallel, several benchmark problems have been developed
over the years to serve as reference problems [16]. However,
as pointed out in [3], there are still few comparisons based on
simulations, which are carried out within the same environment
and are validated against benchmarks, so that it is difficult to
draw general conclusions on the performance of the different
approaches.

The purpose of this article is to implement and study two FE
formulations, a magnetic-field conforming formulation (here
an h–φ formulation) and a magnetic-flux-density conforming
formulation (here an a-formulation), and compare their
performance using the same numerical environment. No a priori
is made on their behavior and several time-stepping schemes,
as well as different iterative techniques, are systematically
investigated.

This article is organized as follows: The different FE models
and formulations are presented in Section II. In Section III,
we start from simple considerations on the treatment of the
nonlinear constitutive law by iterative techniques (Picard and
Newton–Raphson). We then discuss the advantages and draw-
backs of each formulation based on their accuracy and effi-
ciency in one-dimentional (1-D), two-dimensional (2-D), and
three-dimensional (3-D) problems, together with a validation
against known solutions and benchmarks. In Section IV, we
adopt a similar approach for soft ferromagnetic materials with
a magnetic saturation law. As it turns out that the a-formulation
is the best performing one for ferromagnets, whereas the h–φ
formulation is preferred for superconductors, we suggest a cou-
pled formulation for situations where both types of materials are
present. We show that such an approach yields accurate results
with a better efficiency than single formulations. Section V
concludes this article.
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Model files for the main test cases are available online.1

II. MODEL AND FE FORMULATIONS

A. Physical Model

We consider the magnetic response of a system containing
type-II superconductors with strong pinning that are cooled in a
cryogenic fluid or placed in the cold chamber of a measurement
device.

Maxwell’s equations are solved in the magnetodynamic ap-
proximation [17], where the displacement current is neglected

⎧
⎪⎪⎨

⎪⎪⎩

div b = 0

curl h = j

curl e = −∂tb
(1)

where b, h, j, and e are the magnetic flux density (T), the
magnetic field (A/m), the electric current density (A/m2), and
the electric field (V/m), respectively. The system is composed
of nonconducting materials (but possibly magnetic ones), for
which b = μ(h)h and j = 0, together with superconductors,
described by b = μ0h (assuming ‖h‖ � Hc1) and the e–j
power law [18]

j =
jc

ec

(‖e‖
ec

)(1−n)/n

e (2)

where ec (V/m) is a threshold electric field defining the critical
current density jc (A/m2). By convention, ec is often chosen
to be 10−4 V/m. The dimensionless exponent n = U0/kBT
describes the sharpness of the transition to flux flow, where
U0 is the pinning energy barrier and kBT the thermal energy
(kB = 1.38× 10−23 J/K is the Boltzmann constant).

B. FE Formulations

The system is represented by a domain Ω that is decomposed
into a conducting domain Ωc defined as an open set containing
the superconducting materials, and its complementary domain
ΩC

c defined as a closed set containing the other, electrically
insulating, materials. Boundary conditions are applied on the
external boundary ∂Ω, which is decomposed into two comple-
mentary domains: Γe, where the normal component of b or
the tangential component of e is imposed, and Γh, where the
tangential component of h is imposed.

The nonconducting domain ΩC
c can be simply or multiply

connected. Multiply connected geometries typically occur in
the presence of an external source. They can be made simply
connected by introducing cuts [19], as illustrated in Fig. 1, for
the case of a tape with an imposed current.

An injected current intensity I and an applied voltage V
are associated with each connected region of Ωc and are, thus,
defined as global quantities. Exactly one of these quantities
is fixed in each region (coupling with circuit equations is not
considered here). If the domain Ωc is made up of N connected
parts Ωc,i with i ∈ C = {1, 2, . . . , N}, the current intensity is

1[Online]. Available: www.life-hts.uliege.be

Fig. 1. Example of a problem domain (tape case of Section III-B, scale not
respected) with a current imposed across Ωc. The problem is 2-D and contains
a single conducting region. The cut makes ΩC

c simply connected. The external
boundary belongs to Γe as b ·n|Γe = 0 can be assumed provided Γe is far
enough from the conductor.

imposed in a subset CI of C and the voltage is imposed in the
complementary set CV .

An FE mesh is generated to discretize the domain. Nodes,
edges, and facets of the conducting domain boundary belong to
the closed set ΩC

c .
1) Magnetic Field Conform Formulation (h-Formulation):

The chosen h-conform formulation expresses the magnetody-
namic problem in terms of h discretized with Whitney elements
[20] as follows:

h =
∑

e∈Ωc

he ψe +
∑

n∈ΩC
c

φn grad ψn +
∑

i∈C
Ii ci, (3)

whereψe is the edge function of edge e,ψn the node function of
node n, and ci a discontinuous shape function associated with
the cut related to conducting region i, defined on a transition
layer [21]. Coefficients he, φn, and Ii are the degrees of freedom
of the problem. The decomposition in (3) confers two properties
to h. First, using gradients in ΩC

c ensures that h is curl-free
in the nonconducting domain. No spurious current density is
introduced, and there is no need to consider a large electrical re-
sistivity in these regions. Second, the shape functions ci directly
implement the current constraints in the function space, rather
than through an additional integration constraint.

Essential conditions,h× n|Γh
and Ii for i ∈ CI , are strongly

imposed by fixing the corresponding degrees of freedom: he for
e ∈ Γh, φn for n ∈ Γh, and Ii for i ∈ CI . The resulting space
for h, after imposing essential conditions, is denoted by S̄1

h.
Test functions h′ are chosen in the same space (Galerkin

scheme), with coefficients h′e, φ′n, and I ′i, but, however, with
vanishing coefficients where essential conditions are imposed.
The space of test functions is denoted as S̄1

h0.
The resulting weak formulation reads [21], [22]:
From an initial solution at time t = 0, find h ∈ S̄1

h such that,
for t > 0
(
∂t(μ(h) h) ,h

′)
Ω
+
(
ρ(curl h) curl h , curl h′)

Ωc

− 〈e× n ,h′〉
Γe

+
∑

i∈C
ViIi(h′) = 0 ∀h′ ∈ S̄1

h0 (4)
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where the following notations are used for volume and surface
integrals:

(
Ā , B̄

)

Ω
=

∫

Ω

Ā · B̄ dΩ,
〈
Ā , B̄

〉

Γ
=

∫

Γ

Ā · B̄ dΓ (5)

with Ā and B̄ are two scalar or vector fields and · the
scalar multiplication or the dot product, respectively, and with
Ii(h) = Ii. For example, when h′ = ci is chosen (i ∈ CV ,
I ′i = 1), one obtains the circuit equation

(
∂t(μ h) , ci

)

Ω
+
(
ρ curl h , curl ci

)

Ωc
= −Vi. (6)

The formulation (4) is referred to as the h–φ formulation or,
equivalently, the h-formulation. It is a weak form of Faraday’s
equation. The continuity of the tangential component of h is
enforced by the considered shape functions. The natural con-
straints, involving the tangential component of the electric field,
e× n|Γe

, and the potentials Vi for i ∈ CV , are weakly imposed.
In practice, the h-formulation can be solved in one of two

ways. Either the total magnetic field h is considered as the
unknown, leading to the totalh-formulation, orh is decomposed
into a known source field hs and an unknown reaction field hr,
h = hs + hr, leading to the reaction h-formulation.

Note that other h-conform formulations exist, such as the t–ω
formulation. Because the nonlinear constitutive law is involved
in the same manner (resistivity), the main numerical behavior is
expected to be similar.

2) Magnetic Flux Density Conform Formulation (a-
Formulation): Gauss’s law, div b = 0, implies that the magnetic
flux density can be expressed in terms of a vector potential
a such that b = curl a. Faraday’s law can then be rewritten
as curl (e+ ∂ta) = 0 so that e = −∂ta− grad v, with v
an electric scalar potential. A gauge condition is necessary to
guarantee the uniqueness of the vector potential.

We first consider 3-D and 2-D geometries with an in-plane
current density (for instance, a long bar in a parallel magnetic
field). The potentials a and v are discretized with Whitney
elements as follows:

a =
∑

e∈Ω
ae ψe and v =

∑

i∈C
Vivi (7)

where ψe is the edge function of edge e and vi a discontinuous
shape function associated with a cross section of conducting
region i, known as the generalized source potential [23]. Coeffi-
cients ae and Vi are the degrees of freedom. The shape functions
vi allow one to introduce voltage constraints directly in the basis
function, rather than through an integral constraint. Here, the
function vi has a support limited to a transition layer, so that v
is not the usual electrostatic potential, see [23].

Essential conditions,e× n|Γe
andVi for i ∈ CV , are strongly

imposed by fixing the corresponding degrees of freedom, ae
for e ∈ Γe and Vi for i ∈ CV . The resulting space for a, after
imposing essential conditions, is denoted by S1

e . The space for
v, after imposing essential conditions, is denoted by S0

e . The
potential a is unique in Ωc, it is a primitive for e, e = −∂ta, but
it is not unique in ΩC

c , where e is not evaluated. A gauge must
then be introduced in ΩC

c and the resulting space is renamed as
S̃1
e . One convenient gauge, named the co-tree gauge, consists in

(strongly) imposing vanishing coefficients on edges that belong
to an appropriate tree [24]. Another possibility is to (weakly)
impose a Coulomb gauge [24].

Test functionsa′ and v′ are chosen in the spaces defined in (7),
with coefficients a′e and V ′

i , respectively, but however with van-
ishing coefficients where essential conditions are imposed. The
spaces of test functions are denoted as S̃1

e0 and S0
e0, respectively.

Given the nonlinear conductivityσ = σ(−∂ta− grad v) and
reluctivity ν = ν(curla), the weak formulation reads as follows
[23], [25]:

From an initial solution at time t = 0, finda ∈ S̃1
e and v ∈ S0

e

such that, for t > 0

(ν curl a , curl a′)Ω − 〈h× n ,a′〉Γh

+ (σ∂ta ,a
′)Ωc

+ (σgrad v ,a′)Ωc
= 0

∀a′ ∈ S̃1
e0, and

(σ∂ta , grad v′)Ωc
+ (σgrad v , grad v′)Ωc

−
∑

i∈C
IiVi(v

′) = 0 ∀v′ ∈ S0
e0 (8)

with Vi(v) = Vi. For example, when v′ = vi is chosen (i ∈ CI ,
V ′
i = 1), one obtains the circuit equation

(σ∂ta , grad vi)Ωc
+ (σgrad v , grad vi)Ωc

= Ii. (9)

The formulation (8) is referred to as the generalized modified
vector potential formulation, or a-formulation. It is a weak form
of Ampere’s equation. The continuity of the normal component
of b is enforced by the considered shape functions while the
natural constraints, h× n|Γh

and Ii for i ∈ CI , are weakly
imposed.

Note that it is also possible to define v everywhere in the
conducting region (instead of defining it only in a transition
layer) and extend the gauge condition for a to Ωc as well. In all
tested situations, solutions obtained with this a–v formulation
are identical to those obtained with the a-formulation.

In practice, the a-formulation can be solved in one of two
ways. Either the total vector potential a is considered as the
unknown, leading to the total a-formulation, ora is decomposed
into a known source potential as and an unknown reaction
potentialar,a = as + ar, leading to the reaction a-formulation.

We now turn to 2-D geometries with the current density along
the invariant direction. Now, grad v is perpendicular to the
plane and constant in each conducting domain [26]. The vector
potential is chosen in the same direction so that the Coulomb
gauge is implicit (diva = 0). Fieldsa and grad v are discretized
with Whitney elements as follows:

a =
∑

n∈Ω
an ψn and grad v =

∑

i∈C
Uizi (10)

with ψn a perpendicular edge function associated to node n
and zi a piecewise-constant shape function, nonzero in Ωc,i

only. Coefficients an and Ui (voltage per unit length) are the
degrees of freedom. The resulting formulation is analogous
to formulation (8), but with the different function spaces and
unknowns described in (10).
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Fig. 2. One iteration of the Picard and Newton–Raphson iterative techniques in
the case of a single degree of freedom. (a) Picard technique (b) Newton–Raphson
technique.

C. Time Integration

The spatial discretization yields a semidiscrete nonlinear sys-
tem of equations. To obtain a fully discrete system that can be
solved numerically, time must also be discretized. In this article,
an implicit Euler method has been chosen. From the initial
solution at time t = t0, the solution is successively sought at
discrete time instants t1, t2, . . . , tf, not necessarily equidistant.
In the equation for time tn, n ∈ N0, all terms are evaluated at
tn, with the time derivative of any quantity u at time tn being
approximated by the finite difference

du

dt

∣
∣
∣
∣
tn

≈ u(tn)− u(tn−1)

tn − tn−1
. (11)

D. Iterative Techniques

After complete discretization, the original problem takes the
form of a system of nonlinear algebraic equations

A(x)x = b (12)

where x is the vector of degrees of freedom at the considered
time step. This nonlinear system cannot be solved directly and
iterative techniques are necessary.

In this article, we consider Picard and Newton–Raphson
iterative techniques.

1) Picard Technique: The Picard technique [27] belongs to
fixed point methods. From an iterate xi, the next iterate xi+1 is
sought by solving the linear system

A(xi)xi+1 = b, i = 0, 1, . . . . (13)

In general, this method does not exhibit a high convergence rate.
However, even if in some cases, the iterates may enter cycles and
fail to converge, this is usually a robust method in the sense that it
converges for a wide range of initial guesses x0. An illustration
of one iteration of this method in the case of a single unknown
is given in Fig. 2(a).

2) Newton–Raphson Technique: The Newton–Raphson
technique [27] consists in approximating the nonlinear term
A(x)x to first order with a limited Taylor development,
yielding a linear system. From an iterate xi, the next iterate
xi+1 is computed by solving the following linear system

A(xi)xi + J(xi)(xi+1 − xi) = b, i = 0, 1, . . . , (14)

with J the Jacobian matrix defined by

J(x) =
∂

∂x
(A(x)x) . (15)

The Jacobian matrix can be evaluated numerically using finite
differences but if the analytical expression of the matrix is
known, it can be used. This is the case in this article. The involved
analytical expressions are given in the appendix.

This method is usually less robust than the Picard technique
in the sense that if the initial iterate is not sufficiently close to
the solution, the method may diverge. However, when the initial
guess is sufficiently close to the solution, the convergence can
be very fast, with a quadratic rate of convergence. An example
of one iteration of this method in the case of a single unknown
is given in Fig. 2(b).

3) Choosing the Initial Guess: Iterations must start with an
initial guess, or a predictor. The simplest possibility is to consider
the solution at the previous time step. This method is referred
to as the zeroth-order extrapolation method. Several previous
solutions can also be extrapolated and a class of polynomial
extrapolation methods can be defined. In this article, we consider
extrapolations up to order two (that involves the solution at the
last three time steps).

III. COMPARISON OF THE METHODS

The comparison of the different methods is conducted pro-
gressively. First, the application of the iterative techniques on
the nonlinear laws is analyzed in a case with a single degree of
freedom. As shown ahead, the conclusions drawn in the simple
case extend to 1-D, 2-D, and 3-D problems. Then, the accuracy
of the different methods is evaluated and their efficiency is com-
pared in two benchmarked 2-D problems. Finally, the methods
are illustrated on a benchmarked 3-D problem.

In this section, no magnetic material is considered and
b = μ0h everywhere in the domain. Simulations are performed
by the GetDP free software [28], [29] and meshes are generated
by Gmsh [30]. Model files for the main test cases are available
online.2

A. Behavior of the Iterative Techniques

An important difference between the h- and a-formulations
is that they involve the nonlinear electric constitutive law in a
different manner, either through the electrical resistivity or the
electrical conductivity. The shape of this constitutive law has a
strong influence on the behavior of the iterative techniques, as
we now illustrate for simple equations with a single unknown.

Consider a superconducting ring subjected to a time-varying
external magnetic flux Φ̇. The ring can be modeled by lumped
elements: a nonlinear resistor R = Vc/Ic(|I|/Ic)

n−1, which
mimics the electrical resistivity law, in series with a linear
inductor L, yieldingR(I)I + Lİ = Φ̇. Solving the problem for
the current intensity I flowing in the ring gives rise to an equation
of the form (after time discretization) f(x) = |x|n−1x+ x = b,
to be solved at each time step. By contrast, solving for the

2[Online]. Available: www.life-hts.uliege.be
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Fig. 3. Typical shape of the nonlinear functions encountered with the
(a)f(x) = xn + x (h-formulation) and (b)f(x) = x1/n + x (a-formulation).

Fig. 4. Illustration of iteration cycles encountered when solving the supercon-
ducting ring problem. Gray dots represent the successive iterates and dash-dotted
lines connect two successive iterations. N–R stands for Newton–Raphson.
(a) Picard and h-formulation (b) N–R and a-formulation.

voltage across the modeling resistor gives rise to an equation of
the form f(x) = |x|(1−n)/nx+ x = b. The shape of f in both
cases is depicted in Fig. 3. The first case is analogous to the
h-formulation because it involves a resistivity-like parameter,
whereas the second one is analogous to the a-formulation with
a conductivity-like component.

Applying the iterative techniques on the two nonlin-
ear shapes yields the following results. The first equation,
f(x) = |x|n−1x+ x = b (h-formulation), is more efficiently
solved with the Newton–Raphson technique, as the Picard it-
erations easily cycle and fail to converge. An example of cycle
is shown in Fig. 4(a). Conversely, the second equation, f(x) =
|x|(1−n)/nx+ x = b (a-formulation), can hardly be solved with
the Newton–Raphson technique, whereas the Picard technique
shows a good stability. With the Newton–Raphson technique,
iterations also enter cycles as illustrated in Fig. 4(b). Note that for
each case in Fig. 4, the cycling behavior can be circumvented by
using relaxation factors, which, however, requires several trials
to determine the most efficient values to be used.

As shown ahead, the observed behaviors can be generalized
to 1-D, 2-D, and 3-D problems: the Picard technique does not
work directly with the h-formulation, whereas the Newton–
Raphson technique fails to converge when used to linearize
the a-formulation. The origin of the corresponding convergence
issues was observed to be identical to that in the previous simple

problems, as in some regions of the mesh, the degrees of freedom
enter cycles. Again, it is sometimes possible to overcome these
cycles by using finely tuned relaxation factors, a method which,
however, requires trial and error.

B. Comparison of 2-D Models

The numerical study is conducted on two different problems.
The first problem consists in a superconducting bulk cylinder
subjected to an external applied field. The geometry is axisym-
metric and only one slice of one radian is modeled. This test
case will be referred to as the bulk case and is comparable to
benchmark 4 of the HTS modeling website [16].

The second problem consists in a superconducting thin tape
transporting an imposed ac current intensity. The geometry is
assumed two dimensional and only the cross section of the tape
of modeled. This test case will be referred to as the tape case
and is comparable to benchmark 1 of the HTS modeling website
[16].

Following the conclusions of the previous section, the
h-formulation is solved with the Newton–Raphson technique,
whereas the a-formulation is solved with the Picard technique.

1) Convergence Criterion: The chosen convergence crite-
rion for the iterative techniques is based on an estimate P of the
instantaneous electromagnetic power. For the h-formulations,P
is expressed as

P =
(
∂t(μ h) ,h

)

Ω
+
(
ρ j , j

)

Ωc
(16)

with j = curl h. For the a-formulations, P is given as

P =
(
ν ∂tb , b

)

Ω
+
(
σe , e

)

Ωc
(17)

with b = curl a and e = −∂ta− grad v.
The criterion requires the relative change1 of P between two

iterations to be smaller than a given tolerance ε. This choice
of convergence criterion is motivated by the observation that
similar residuals do not correspond to similar accuracies in each
formulations, whereas quantity P is comparable between the
formulations.

In the following, we first evaluate the accuracy of the numer-
ical solutions. Then, we compare the efficiency of the methods
that lead to accurate results.

2) Accuracy of the Formulations:
Bulk case: The bulk superconductor has a radiusR = 12.5

mm and a height H = 10 mm. The critical current density is
jc = 3× 108 A/m2. Cylindrical coordinates (r, θ, z) are intro-
duced. The cylinder is subjected to an external field applied
parallel to its axis (the z-axis), so that the problem is axisym-
metric. The time evolution of the applied field is illustrated in
Fig. 5 with bmax = 1 T and t1, t2, and t3 equal to 5, 10, and 15 s,
respectively.

Fig. 6 shows the azimuthal current density obtained with both
formulations at the three instants t1, t2, and t3, whereas Fig. 7

1The relative change is defined as |(Pi − Pi−1)/Pi−1|, wherePi is the value
of the convergence indicator at iteration i. If the value of Pi−1 is smaller than
10−7, the relative change is replaced by the absolute increment divided by
10−7 W/m. This scheme is followed to avoid convergence issues when Pi−1 is
too small and is only motivated by the tested situations.
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Fig. 5. Time evolution of the external applied field in the bulk test case.

Fig. 6. Current density distribution in a slice of the bulk cylindrical geometry
at the instants t1, t2, and t3 for a maximum applied field of 1 T and n = 20.
White areas are free of current, light gray areas are crossed by out-of-plane
current densities, and dark gray areas are crossed by opposite current densities.
Top: a-formulation. Bottom: h-formulation.

Fig. 7. Distribution of the z-component of the magnetic flux density 2 mm
above the cylinder at the instants t1, t2, and t3 for a maximum applied field of
1 T and n = 20. Solid lines: h-formulation. Dashed lines: a-formulation.

shows the corresponding vertical components of the magnetic
flux density 2 mm above the cylinder. With mesh and time
refinement, the solutions of the h- and a-formulations are seen
to approach each other (both globally and locally). The global
convergence is illustrated in Fig. 8.

Note that the quality of the solution is not always good for
coarser meshes and/or large time steps. For instance, the fields
h obtained with the h-formulation and a obtained with the
a-formulation both exhibit small amplitude oscillations over a
few elements, located ahead of the sharp flux penetration front.
This results in oscillations in the other fields also. Because
the current density is expressed through the power law in the
a-formulation, the oscillations are strongly amplified. In the
h-formulation, the current density is obtained through the curl
of h and the oscillations are, thus, not as much amplified, as
shown in Fig. 9. In both formulations, the error is localized in

Fig. 8. Change of ac losses
∮

cycle
(j ,e)Ωc

dt, relative to an accurate solution,

for various numbers of spatial degrees of freedom, for the two formulations,
with constant time step (Δt = t1/50 s), and n = 25. The reference value is
determined as the arithmetic mean of the solutions obtained with the finest
mesh, in the h- and a-formulations (4.9495 J/m·cycle).

Fig. 9. Current density profiles, as a function of the distance r to the symmetry
axis, at the mid-height of the cylinder, at time t3 for a maximum applied field of
1 T and n = 20. Upper figure: Coarse mesh of 1661 nodes. Lower figure: Finer
mesh with 36 989 nodes.

a few elements and, thus, becomes negligible when the mesh is
refined (see the lower part of Fig. 9, and also Fig. 6). As discussed
ahead, the choice of the time step also has an important influence
on the solution accuracy.

Tape case: The tape has a large aspect ratio: Its height
is H = 1 μm and its width is W = 12 mm. The critical cur-
rent density is jc = 2.5× 1010 A/m2. Cartesian coordinates
are introduced with the x-axis along the width of the tape
and the y-axis along its height. A sine-wave current intensity
I(t) = Imax sin(2πft) is imposed, with a frequency f = 50 Hz
and an amplitude Imax = FIc, where Ic = HWjc is the critical
current intensity andF ∈ [0, 1] a constant. The superconducting
domain is meshed with one layer of first-order quadrangular
elements.

Fig. 10 shows the current density and magnetic flux density
distributions after one-fourth of a period obtained with both for-
mulations. Again, with mesh and time refinement, the solutions
of the h- and a-formulations converge to each other and the
solutions are reliable, see Fig. 11. Note that the current density
profile is still very sensitive to thea field with the a-formulation,

Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on October 06,2020 at 07:14:51 UTC from IEEE Xplore.  Restrictions apply. 



DULAR et al.: FINITE-ELEMENT FORMULATIONS FOR SYSTEMS WITH HIGH-TEMPERATURE SUPERCONDUCTORS 8200113

Fig. 10. Current density and magnetic flux density distributions in the tape
at time instant 1/(4f) for different power exponents n and imposed current
intensities Imax = FIc. Left: h-formulation. Right: a-formulation.

Fig. 11. Change of ac losses
∮

cycle
(j,e)Ωc

dt, relative to an accurate solution,

for various numbers of spatial degrees of freedom, for the two formulations, with
constant time step (Δt = 1/(50f) s), and n = 100. The accurate solution is
the arithmetic mean of the values obtained with the finest mesh in the h- and
a-formulations.

especially with large n values. The convergence criterion must
be strong enough if accurate current density profiles are sought
with the a-formulation.

Reaction and total formulations: The solutions aforemen-
tioned were obtained with the total h- and a-formulations.
Numerical solutions of the reaction formulations are exactly
identical to those of the total formulations. Of course, this
is only the case provided that the source field hs or poten-
tial as are representable in the corresponding shape function
space.

Influence of the time step: The choice of the time step is
important for both the solution accuracy and the convergence
properties. The motivation for studying this influence is based on
the observation that, in some situations, the iterative techniques
converge even with very large time steps while providing reliable
magnetic flux density distributions. With the a-formulation and

Fig. 12. Comparison between the numerical solutions for two time discretiza-
tion levels for n = 10 and n = 100. Dashed curves correspond to the solution
obtained with a single time step, whereas solid curve are obtained after 100 time
steps. Solid curves coincide with the approximated analytical solution from [31]
(not represented in the figure). Solutions of theh-formulation, in a 1-D geometry.
Applied field rate: 5 T/s.

the Picard linearization technique, it has even been observed that
the larger the time step, the easier the convergence. A single-
time-step method has already been discussed by Lousberg in
[11] and [18]. To some extent, such an approach is also possible
with the h-formulation and the Newton–Raphson technique. It
is, thus, tempting to use very large time steps to accelerate the
simulations. This possibility should, however, be exploited with
care as not all quantities are reliable when large time steps are
used.

To check the validity of the results, a simple 1-D case is
considered. It consists in a 25-mm-wide slab subjected to a
parallel field increasing linearly over time at 5 T/s. Note that
in the limit of fine meshes and small time steps, both h- and a-
formulations accurately reproduce the analytical results of [31].
Magnetic flux and current penetration profiles are compared for
two time discretization levels: with a single time step, and with
100 time steps. Materials with n = 10 and n = 100 are chosen.
Fig. 12 compares the corresponding numerical solutions for the
h-formulation. Results from the a-formulation are similar. As
can be seen in the figure, even if the method has converged in
the four cases, there is a large error on the magnetic flux density
distribution and the current density profile for the low-power
exponent n = 10. Clearly, the single-time-step approach is not
reliable in that case. However, with a larger exponent, both time
discretization levels provide accurate results.

These observations can be explained as follows. In the Bean
model [32] limit (n→ ∞) and with a linear ramp of applied
field, the magnetic flux density distribution is linear in space
and the flux front propagates at constant speed. In the FE model,
time derivatives are estimated by a finite difference approxima-
tion (backward Euler method). This approximation amounts to
replacing the instantaneous increase of the magnetic flux density
by its average increase over the considered time step. This is
illustrated in Fig. 13 in the extreme case of a single time step for
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Fig. 13. Illustration of the error induced by the finite difference approximation
of the time derivative in the case of large time steps. Up: Inside the supercon-
ductor, magnetic flux density distribution at several time instants for a linearly
increasing source field in the Bean model limit. Down: Time evolution of the
magnetic flux density at several spatial points (bold gray curves) and illustration
of the finite difference approximation (dash-dotted lines) in the case of a single
numerical time step. Time instants t0, . . . , t4 are equidistant.

the whole time interval, for a magnetization from a virgin state.
In this situation, the time derivative is underestimated almost
everywhere in the material. If more time steps are considered,
the underestimation error is localized near the front and its
influence is, thus, reduced. A power law model with a finite
exponentn yields a different distribution but the finite difference
still underestimates the time derivative. The error on the time
derivative is present both for small values of n and in the Bean
limit. However, the effect of this error on the current and flux
distributions is found to be larger for smaller n, as previously
observed in [11].

The error on time derivatives induces an error on e (via
Faraday’s law curl e = −∂tb in the h-formulation and via
e = −∂ta− grad v in the a-formulation). With large n, the
resulting error on j is small because of the strong nonlinearity
of the constitutive law. For decreasing n, the sensitivity of j
to e increases for ‖j‖ close to jc and the error on j, thus,
increases. Because e is underestimated, j is also underestimated
and, to reach h = hs at the material–air interface, this implies
a larger penetration distance, as observed in the simulations.
Therefore, even though the use of very large time steps provides
accurate current and field distributions when n is large enough,
time derivatives are always underestimated and this leads to
nonnegligible errors on the electric field. Power quantities and
losses rely on time derivatives and are, thus, also underestimated.
The use of large time steps is, thus, not appropriate for computing
the instantaneous power dissipation or losses.

Conclusions on the accuracy: All formulations lead to
accurate and reliable results provided that the time step, the mesh
size, and the convergence criterion are sufficiently small. For
coarser meshes, the a-formulation provides large oscillations

of the current density in nonpenetrated regions. There is a
possibility to use large time steps to speed up the simulations,
more specifically in the a-formulation, but the accuracy on
time derivatives is reduced. This can nevertheless be exploited
to obtain fast and reliable magnetic flux density and current
distributions for large n.

3) Efficiency of the Formulations: The convergence speed of
all methods is not identical. Depending on the method and on the
choice of the first iterate, or predictor, the iterative techniques
may require very different numbers of iterations to converge.
Because the simulation time is proportional to the total number
of iterations, this affects the calculation speed. The accurate
methods that were identified in the previous section (small
time step, fine mesh, and strong convergence criterion) are now
compared in terms of their efficiency.

To proceed, the bulk and the tape cases are considered with
three discretization levels: coarse, medium, and fine, defined
by a multiplier α equal to 4, 2, and 1, respectively. The power
law exponent is n = 25 in both geometries and F = 0.9 for the
tape. In the bulk case, the mesh size varies from 0.3α mm in
the cylinder to 3α mm at the outer surface. The number of time
steps from 0 to t3 is 300/α. In the tape case, the number of
quadrangular elements along the width of the tape is 400/α and
the number of time steps for one period is 100/α.

In some situations, the iterative techniques diverge or do
not converge in a reasonable number of iterations. To treat
automatically these issues, an adaptive time step procedure
is implemented. This is crucial for efficient resolutions with
the Newton–Raphson technique: small time steps are typically
necessary during the first penetration of magnetic flux but one
can afford larger steps once the sample is saturated. The heuristic
procedure is defined as follows (procedure from [33]): First, if
the number of iterations exceeds imax with a time step Δt or if
the iteration diverges, the current time integration step restarts
with a smaller time step equal to γΔt, with γ < 1; second, if
a step with time step Δt converges in less than ifast iterations,
the next time step is chosen equal to min(βΔt,Δtmax), with
β > 1 and a fixed Δtmax. Here, we choose γ = 1/2, β = 2,
Δtmax equals the initial time step, ifast = imax/4. For the h-
and a-formulations, we choose imax = 60 and imax = 500,
respectively.

Table I shows the number of solved linear systems required
in the bulk and tape cases, with the two formulations and
different extrapolation orders for the first iterate. Clearly, for an
identical time discretization, the slower convergence rate of the
Picard technique used in the a-formulation is detrimental and the
h-formulation is more efficient. This can be observed in Fig. 14,
where the system residual does not decrease monotonously
with the Picard technique, whereas a quadratic convergence
rate is obtained at the last iterations with the Newton–Raphson
technique.

Results show that choosing the first iterate (the predictor) with
an extrapolation from the previous time steps is efficient for
reducing the total number of iterations. A good choice is the first-
order extrapolation of the last two steps with the h-formulation
and the second-order extrapolation of the last three steps for the
a-formulation.
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TABLE I
TOTAL NUMBER OF SOLVED LINEAR SYSTEMS FOR THE SIMULATION FROM 0

TO t3 IN THE BULK CASE AND FOR 5/4f IN THE TAPE CASE, FOR THREE

DISCRETIZATION LEVELS, THREE EXTRAPOLATION TECHNIQUES WITH THE

h-FORMULATION AND THE a-FORMULATION

Relative tolerance for the convergence criterion: 10−6 (except for the tape with the
a-formulation, 10−4). Simulation times for the fastest simulations of each line are, on
a single Intel Xeon 2 GHz CPU with 4 Gb RAM, from top to bottom, 12 s, 1 m 55 s,
1 h 38 m, 20 s, 2 m 50 s, and 14 m.

Fig. 14. Evolution of the 2-norm of the residual ri = b−A(xi)xi with the
iterations, for three examples of time integration step and for the two linearization
techniques, for the bulk case. (a) Newton–Raphson with the h-formulation and
the zeroth-order extrapolation. (b) Picard with the a-formulation and the first-
order extrapolation.

If a good accuracy is sought for all quantities, small time steps
should be used and, in that case, the h-formulation reaches a
solution faster. Typically, with identical discretization levels, the
h-formulation is two to ten times faster than the a-formulation.
On the contrary, in controlled situations where the use of large
time steps is acceptable, e.g., with large n values and for deter-
mining the current and flux distributions, the a-formulation is
much more stable and might be used to get fast results, as will
be illustrated in the next section. In that case of large time steps,
the h-formulation with the Newton–Raphson technique is less
appropriate because the iterations diverge if the initial estimate
is not sufficiently close to the solution.

C. Cube 3-D Model

The conclusions shown earlier are now illustrated on a
3-D problem: A superconducting cube subjected to an external
applied field parallel to its side faces. The problem is similar
to benchmark 5 of the HTS modeling website [34]. The cube
side is a = 10 mm, materials properties are jc = 108 A/m2

and n = 100. The applied field is homogeneous and varies
sinusoidally with time with a peak value of 200 mT and a

Fig. 15. Magnetization curve for the superconducting cube, obtained with two
formulations. Gray dots represent the solutions at successive (large) time steps.

Fig. 16. Current density distribution on the boundaries of one-eighth of the
superconducting cube after the first ramp of μ0hs = 0.2 T. Left: h-formulation.
Right: a-formulation. Scale is for the arrow color.

frequency f = 50 Hz. One-eighth of the cube is modeled. The
superconducting domain is meshed with cubes (16× 16× 16
cubes) and the surrounding domain is meshed with tetrahedra
and pyramids.

The magnetization curve is computed by two methods: the
a-formulation with large time steps (20 steps only for the curve,
calculation time 3h30m, same CPU as in Table I) for a fast reso-
lution, and the h-formulation with smaller time steps (300 steps
for the curve, calculation time 10 h) for an accurate evaluation
of all quantities. The magnetization curves are given in Fig. 15,
they both match the benchmark results. Even for large time steps,
the a-formulation yields accurate magnetization values, due to
the large n-value. On the contrary, to compute accurately time
integrated quantities, it is necessary to use smaller time steps. In
that case, the h-formulation is recommended. For illustration, a
perspective view of the solution of both formulations is given
in Fig. 16. Again, note the slight oscillations of the current
density after the flux front from the a-formulation. If needed,
these oscillations can be decreased by refining the mesh and
strengthening the convergence criterion.

IV. EXTENSION TO SYSTEMS CONTAINING

SOFT FERROMAGNETS

The models developed earlier are directly adapted for treating
systems containing linear isotropic nonconducting ferromag-
netic domains. To model saturation, a nonlinear law must be
introduced and an appropriate linearization technique must be
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Fig. 17. Ferromagnetic constitutive law and representation of the physical
parameters.

chosen. It appears that the approach followed for the supercon-
ductor can be transposed for the ferromagnet.

A simple model for an isotropic saturation law expresses the
permeability μ = μ(h) as a rational expression of first-order
polynomials, leading to the following relationship:

b = μ0

(

1 +

(
1

μr0 − 1
+

‖h‖
m0

)−1
)

h (18)

where μr0 is the relative permeability at origin and m0 (A/m)
the saturation magnetic field. A graphical representation of
this law is given in Fig. 17. The permeability law is involved
in the h-formulation. The model can be explicitly inverted
(see the appendix) to yield the reluctivity law required for the
a-formulation.

The behavior of the iterative techniques on this nonlinear law
is found to be analogous to what was observed for the power
law. On the one hand, the law b = μh has the same concavity
than the law j = σe and the application of the Newton–Raphson
technique leads to iteration cycles, although the situation is less
severe here because the permeability is finite at the origin. On
the other hand, the law h = νb is comparable to the law e = ρj
and, in that case, the Picard technique is less appropriate.

Following the same reasoning as with the superconductor,
it is, therefore, recommended to linearize the h-formulation
with a Picard technique and the a-formulation with a Newton–
Raphson technique when modeling soft ferromagnets only. The
a-formulation is, thus, expected to be more efficient than the
h-formulation because it will benefit from the high rate of
convergence of the Newton–Raphson technique. This is what
is actually observed. Note that we also found that switching
from the Picard technique to the Newton–Raphson technique for
b = μh after a given number of iterations also helps avoiding
cycles. This, however, remains less efficient than using the
a-formulation.

Remarkably, conclusions for the superconductor and the fer-
romagnet are antagonistic: the h-formulation is preferred for the
former material, whereas the a-formulation is more efficient for
the latter. Using a single formulation for the whole domain is,
thus, expected to be suboptimal. Consequently, we investigated
the benefits of using a coupled formulation in a 2-D example.

A. Coupled Formulation

Let the problem domain Ω be decomposed into two parts: Ω̄
containing the superconducting domain and its boundary and Ω̂

Fig. 18. Schematics of the domain decomposition for the coupled formulation.
SC, FM, and air stand for the superconducting, ferromagnetic, and air (or
cryogenic fluid) domains, respectively.

containing the union of the ferromagnetic, the air (or cryogenic
fluid) domains, and their boundaries. Thus, Ω̄ ∪ Ω̂ = Ω. Their
nonempty intersection Ω̄ ∩ Ω̂ is a curve and is denoted by Γm,
as illustrated in Fig. 18 (note that Ω̄ must not necessarily be
enclosed by Ω̂). Surfaces Γ̄e, Γ̄h, Γ̂e, and Γ̂h are defined in the
associated domains. Note that the air domain could be placed in
Ω̄ instead.

Domain Ω̄ is solved with the h-formulation, whereas domain
Ω̂ is solved with the a-formulation. The coupling surface Γm is
treated differently in the two sets; degrees of freedom on this
surface cannot be known a priori, and thus cannot be strongly
imposed. Instead, the coupling can be weakly imposed within the
surface integrals in the weak formulations, as natural continuity
constraints. Consequently, Γm ⊂ Γ̄e and Γm ⊂ Γ̂h. It can be
shown that this procedure weakly ensures the continuity of the
tangential component of h and of the normal component of b.

For conciseness, let Γ̄e and Γ̂h be equal to Γm. The coupled
formulation is then expressed as follows:

From an initial solution at time t = 0, find h ∈ S̄1
h(Ω̄) and

a ∈ S̃1
e (Ω̂) such that, for t > 0
(
∂t(μ h) ,h

′)
Ω̄
+
(
ρ curl h , curl h′)

Ω̄c

+
〈
∂ta× nΩ̄ ,h

′〉
Γm

+
∑

i∈C
ViIi(h′) = 0

(ν curl a , curl a′)Ω̂ − 〈h× nΩ̂ ,a
′〉

Γm
= 0

∀h′ ∈ S̄1
h0(Ω̄) and ∀a′ ∈ S̃1

e0(Ω̂). (19)

Note that the coupling operates through the two surface integral
terms. Similar coupling schemes are discussed in detail in [35]
and [36], and have been introduced in another context in [37].

B. Efficiency Comparison

The benefits of using the coupled formulation are illustrated
on an induced current case. The geometry consists in a fer-
romagnetic cylinder (μ0m0 = 1.31 T, μr0 = 1700) of radius
R = 12.5 mm and height Hferro = 5 mm placed on the top of a
superconducting bulk cylinder (n = 20, jc = 3× 108 A/m2) of
radius R and height Hsuper = 5 mm. The system is subjected
to an external applied field aligned with the cylinders axis
(increasing from 0 T to the maximum applied field of 5 T
with a rate of 25 mT/s, then decreasing to −5 T with the
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TABLE II
TOTAL NUMBER OF SOLVED LINEAR SYSTEMS FOR THE LOADING–UNLOADING

CYCLE FOR DIFFERENT METHODS AND THREE DISCRETIZATION LEVELS

Bold numbers are the minima of each line. Underlined numbers correspond
to simulations where cycles in the iterations were encountered. Italic numbers
refer to simulations where the Newton–Raphson technique diverged at least
once (and where the time step had to be temporarily reduced). SC stands for
superconductor, FM for ferromagnet. NR stands for Newton–Raphson, and Pi
for Picard. Relative tolerance for the convergence criterion: 10−6. Simulation
times on a single Intel Xeon 2 GHz CPU with 4 Gb RAM are 56 s, 5 m 30 s,
and 48 m 40 s for the bold numbers.

opposite rate). The accuracy of the formulation is successfully
verified. The efficiency is summarized in Table II for different
methods and discretization levels. The mesh size varies from
0.3α mm in the cylinders to 5α mm at the outer surface, with
α equals 4, 2, and 1 in the coarse, medium, and fine levels,
respectively. For the coupled formulation, for example, this gives
rise to 840 2800, and 10 800 degrees of freedom, respectively.
The minimum number of time steps is fixed to 400/α. The
hybrid linearization technique consists in switching from Picard
iterations to Newton–Raphson iterations after a given number
of iterations (here 20).

The first observation is that in all configurations, the coupled
formulation, with first-order extrapolation, is the most efficient
one.

The total a-formulation suffers from the low convergence rate
of the Picard technique. Nevertheless, as already mentioned, the
Picard technique in the a-formulation can still be useful when
using very large time steps (not represented in the table). In
that case, it becomes more stable than the Newton–Raphson
technique of the h-formulation.

When the total h-formulation does not encounter iteration
cycles, its efficiency is found to be nearly equivalent to that of
the coupled formulation. However, there is no a priori guar-
antee that a cycle will not be encountered (in the example of
Table II, cycles appear in all three cases). The time step must be
sufficiently small, but no quantitative criterion has been found
and if cycles arise, the number of iterations strongly increases.
In the presence of a cycle, the efficiency can be improved in
practice with a fine tuning of the time stepping parameters.
The resulting set of parameters would, however, not necessarily
apply to other geometries or materials. Also, using a relaxation
factor procedure, e.g., an accelerated search technique [38] can
help to avoid cycles. It, however, requires several trials to find
the right factor and because better results can be obtained with
other methods, this solution has not been investigated further.

The hybrid technique for linearization of the ferromagnet
is interesting to prevent cycles but becomes detrimental in
situations, where these cycles do not appear or with finer dis-
cretizations. Again, this could be optimized by making the

switching procedure more specific. Because it would also rely on
a trial-and-error procedure and would not necessarily generalize
to other problems, this is not desirable.

The coupled formulation is simple and robust and does not
need parameter tuning.

V. CONCLUSION

In this article, we compared the accuracy and efficiency of
two FE formulations for modeling HTSs in 1-D, 2-D, and 3-D
geometries. We concluded that the choice of the formulation
essentially depends on the sought results. When accurate results
are wanted, the h-formulation might be preferred, together with
a Newton–Raphson linearization technique and an adaptive time
step procedure. Moreover, efficiency is highly enhanced when
an appropriate predictor is chosen, e.g., a linear extrapolation
of the last two solutions. When one can afford less accuracy
on quantities relying on time derivatives, very fast results can
be obtained with the a-formulation together with the Picard
linearization technique. This option is particularly interesting
in the case of large exponent values in the conductivity power
law to get a good approximation of the magnetic field and the
current density.

We applied the same approach to soft ferromagnetic materials.
We arrived at opposite conclusions, thea-formulation is the most
efficient and we, thus, proposed a coupled formulation to model
systems containing both HTSs and soft ferromagnets.

In further works, others aspects such as thermal coupling, b-
dependent jc, anisotropic properties or ferromagnetic hysteresis
would be very interesting to investigate.

APPENDIX

The linearization of the system matrix by the Newton–
Raphson technique requires the expressions of the derivatives
of the nonlinear constitutive laws. As these laws are vector
relations, the derivatives are second-order tensor expressions.
In the following expressions, index notation is used.

The superconductor constitutive relation (2) diverges for
‖e‖ → 0. In this article, the constitutive law has been regularized
as follows

j =
jc

ec

1

εσ + (‖e‖/ec)
(n−1)/n

e = σ(‖e‖)e (20)

with εσ = 10−8. Its tensor derivative is given by

∂ji
∂ej

= σ(‖e‖) δij − n− 1

n

(
σ(‖e‖))2
jcec

(
ec

‖e‖
)(n+1)/n

eiej .

(21)
Conversely, the inverse law (resistivity sense), given by

e =
ec

jc

(‖j‖
jc

)n−1

j = ρ(‖j‖)j (22)

gives

∂ei
∂jj

= ρ(‖j‖)δij + (n− 1)
ρ(‖j‖)
‖j‖2 jijj . (23)
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Using the law (18) for ferromagnetic materials yields

∂bi
∂hj

= μ0

[

1 +

(
1

μr0 − 1
+

‖h‖
m0

)−1
]

δij

− μ0

m0

[
1

μr0 − 1
+

‖h‖
m0

]−2
hihj
‖h‖ . (24)

Conversely, the inverse law, given by

h =
1

2

(‖b‖
μ0

− μr0m0

μr0 − 1
+ s(‖b‖)

)
b

‖b‖ (25)

with

s(‖b‖) =
√
(
μr0m0

μr0 − 1
− ‖b‖

μ0

)2

+
4m0

μr0 − 1

‖b‖
μ0

(26)

gives

∂hi
∂bj

=
1

2

[
1

μ0
− μr0m0

(μr0 − 1)‖b‖ +
1

‖b‖s(‖b‖)
]

δij

+
1

2

[
μr0m0

(μr0 − 1)‖b‖3 − 1

‖b‖3 s(‖b‖)

+ (s(‖b‖))−1

(
2− μr0

μr0 − 1
m0 +

‖b‖
μ0

)
1

μ0‖b‖2
]

bibj .

(27)
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